

qemu.qmp: QEMU Monitor Protocol Library

Welcome! qemu.qmp is a QEMU Monitor Protocol [https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-intro.txt]
(“QMP”) library written in Python, using asyncio [https://docs.python.org/3/library/asyncio.html]. It is used to send
QMP messages to running QEMU [https://www.qemu.org/] emulators. It
requires Python 3.6+ and has no mandatory dependencies.

This library can be used to communicate with QEMU emulators, the QEMU
Guest Agent [https://qemu.readthedocs.io/en/latest/interop/qemu-ga.html] (QGA),
the QEMU Storage Daemon [https://qemu.readthedocs.io/en/latest/tools/qemu-storage-daemon.html]
(QSD), or any other utility or application that speaks QMP [https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-intro.txt].

This library makes as few assumptions as possible about the actual
version or what type of endpoint it will be communicating with;
i.e. this library does not contain command definitions and does not seek
to be an SDK or a replacement for tools like libvirt [https://libvirt.org/] or virsh [https://libvirt.org/manpages/virsh.html]. It is “simply” the protocol
(QMP) and not the vocabulary (QAPI [https://www.qemu.org/docs/master/devel/qapi-code-gen.html]). It is up
to the library user (you!) to know which commands and arguments you want
to send.

Who is this library for?

It is firstly for developers of QEMU themselves; as the test
infrastructure of QEMU itself needs a convenient and scriptable
interface for testing QEMU. This library was split out of the QEMU
source tree in order to share a reference version of a QMP library that
was usable both within and outside of the QEMU source tree.

Second, it’s for those who are developing for QEMU by adding new
architectures, devices, or functionality; as well as targeting those who
are developing with QEMU, i.e. developers working on integrating QEMU
features into other projects such as libvirt, KubeVirt, Kata Containers,
etc. Occasionally, using existing virtual-machine (VM) management stacks
that integrate QEMU+KVM can make developing, testing, and debugging
features difficult. In these cases, having more ‘raw’ access to QEMU is
beneficial. This library is for you.

Lastly, it’s for power users who already use QEMU directly without the
aid of libvirt because they require the raw control and power this
affords them.

Who isn’t this library for?

It is not designed for anyone looking for a turn-key solution for VM
management. QEMU is a low-level component that resembles a particularly
impressive Swiss Army knife. This library does not manage that
complexity and is largely “VM-ignorant”. It’s not a replacement for
projects like libvirt [https://libvirt.org/], virt-manager [https://virt-manager.org/], GNOME Boxes [https://wiki.gnome.org/Apps/Boxes], etc.

Installing

This package can be installed from PyPI with pip:

> pip3 install qemu.qmp

Usage

Launch QEMU with a monitor, e.g.:

> qemu-system-x86_64 -qmp unix:qmp.sock,server=on,wait=off

Then, at its simplest, script-style usage looks like this:

import asyncio
from qemu.qmp import QMPClient

async def main():
 qmp = QMPClient('my-vm-nickname')
 await qmp.connect('qmp.sock')

 res = await qmp.execute('query-status')
 print(f"VM status: {res['status']}")

 await qmp.disconnect()

asyncio.run(main())

The above script will connect to the UNIX socket located at
qmp.sock, query the VM’s runstate, then print it out
to the terminal:

> python3 example.py
VM status: running

For more complex usages, especially those that make full advantage of
monitoring asynchronous events, refer to the online documentation [https://qemu-project.gitlab.io/python-qemu-qmp/] or type
import qemu.qmp; help(qemu.qmp) in your Python terminal of choice.

Contributing

Contributions are quite welcome! Please file bugs using the GitLab
issue tracker [https://gitlab.com/qemu-project/python-qemu-qmp/-/issues]. This
project will accept GitLab merge requests, but due to the close
association with the QEMU project, there are some additional guidelines:

	Please use the “Signed-off-by” tag in your commit messages. See
https://wiki.linuxfoundation.org/dco for more information on this
requirement.

	This repository won’t squash merge requests into a single commit on
pull; each commit should seek to be self-contained (within reason).

	Owing to the above, each commit sent as part of a merge request
should not introduce any temporary regressions, even if fixed later
in the same merge request. This is done to preserve bisectability.

	Please associate every merge request with at least one GitLab issue [https://gitlab.com/qemu-project/python-qemu-qmp/-/issues]. This
helps with generating Changelog text and staying organized. Thank you
🙇

Developing

Optional packages necessary for running code quality analysis for this
package can be installed with the optional dependency group “devel”:
pip install qemu.qmp[devel].

make develop can be used to install this package in editable mode
(to the current environment) and bring in testing dependencies in one
command.

make check can be used to run the available tests. Consult
make help for other targets and tests that make sense for different
occasions.

Before submitting a pull request, consider running
make check-tox && make check-pipenv locally to spot any issues that will
cause the CI to fail. These checks use their own virtual environments [https://docs.python.org/3/tutorial/venv.html] and won’t pollute your working
space.

Stability and Versioning

This package uses a major.minor.micro SemVer versioning [https://semver.org/], with the following additional semantics during
the alpha/beta period (Major version 0):

This package treats 0.0.z versions as “alpha” versions. Each micro
version update may change the API incompatibly. Early users are advised
to pin against explicit versions, but check for updates often.

A planned 0.1.z version will introduce the first “beta”, whereafter each
micro update will be backwards compatible, but each minor update will
not be. The first beta version will be released after legacy.py is
removed, and the API is tentatively “stable”.

Thereafter, normal SemVer [https://semver.org/] / PEP440 [https://peps.python.org/pep-0440/] rules will apply; micro updates
will always be bugfixes, and minor updates will be reserved for
backwards compatible feature changes.

Changelog

0.0.1 (2022-07-20)

	Initial public release. (API is still subject to change!)

Documentation

	Overview
	Classes
	QMPClient

	Message

	EventListener

	Runstate

	Exceptions

Module Reference

	Error classes

	Events
	EventListener Tutorial
	listener() context blocks with one name

	listener() context blocks with two or more names

	listener() context blocks with no names

	Using async iterators to retrieve events

	Using asyncio.Task to concurrently retrieve events

	Using register_listener() and remove_listener()

	Using the built-in all events listener

	Using both .get() and async iterators

	Creating multiple listeners

	Clearing listeners

	Accessing listener history

	Using event filters

	Activating an existing listener with listen()

	Activating multiple existing listeners with listen()

	Extending the EventListener class

	Experimental Interfaces & Design Issues
	qmp.listen()’s type signature

	API Reference

	Legacy API

	QMP Messages
	QMP Data Models

	Asyncio Protocol

	QMP Protocol

	Utilities

Indices and tables

	Index

	Module Index

	Search Page

qemu.qmp: QEMU Monitor Protocol Library

Welcome! qemu.qmp is a QEMU Monitor Protocol [https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-intro.txt]
(“QMP”) library written in Python, using asyncio [https://docs.python.org/3/library/asyncio.html]. It is used to send
QMP messages to running QEMU [https://www.qemu.org/] emulators. It
requires Python 3.6+ and has no mandatory dependencies.

This library can be used to communicate with QEMU emulators, the QEMU
Guest Agent [https://qemu.readthedocs.io/en/latest/interop/qemu-ga.html] (QGA),
the QEMU Storage Daemon [https://qemu.readthedocs.io/en/latest/tools/qemu-storage-daemon.html]
(QSD), or any other utility or application that speaks QMP [https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-intro.txt].

This library makes as few assumptions as possible about the actual
version or what type of endpoint it will be communicating with;
i.e. this library does not contain command definitions and does not seek
to be an SDK or a replacement for tools like libvirt [https://libvirt.org/] or virsh [https://libvirt.org/manpages/virsh.html]. It is “simply” the protocol
(QMP) and not the vocabulary (QAPI [https://www.qemu.org/docs/master/devel/qapi-code-gen.html]). It is up
to the library user (you!) to know which commands and arguments you want
to send.

Who is this library for?

It is firstly for developers of QEMU themselves; as the test
infrastructure of QEMU itself needs a convenient and scriptable
interface for testing QEMU. This library was split out of the QEMU
source tree in order to share a reference version of a QMP library that
was usable both within and outside of the QEMU source tree.

Second, it’s for those who are developing for QEMU by adding new
architectures, devices, or functionality; as well as targeting those who
are developing with QEMU, i.e. developers working on integrating QEMU
features into other projects such as libvirt, KubeVirt, Kata Containers,
etc. Occasionally, using existing virtual-machine (VM) management stacks
that integrate QEMU+KVM can make developing, testing, and debugging
features difficult. In these cases, having more ‘raw’ access to QEMU is
beneficial. This library is for you.

Lastly, it’s for power users who already use QEMU directly without the
aid of libvirt because they require the raw control and power this
affords them.

Who isn’t this library for?

It is not designed for anyone looking for a turn-key solution for VM
management. QEMU is a low-level component that resembles a particularly
impressive Swiss Army knife. This library does not manage that
complexity and is largely “VM-ignorant”. It’s not a replacement for
projects like libvirt [https://libvirt.org/], virt-manager [https://virt-manager.org/], GNOME Boxes [https://wiki.gnome.org/Apps/Boxes], etc.

Installing

This package can be installed from PyPI with pip:

> pip3 install qemu.qmp

Usage

Launch QEMU with a monitor, e.g.:

> qemu-system-x86_64 -qmp unix:qmp.sock,server=on,wait=off

Then, at its simplest, script-style usage looks like this:

import asyncio
from qemu.qmp import QMPClient

async def main():
 qmp = QMPClient('my-vm-nickname')
 await qmp.connect('qmp.sock')

 res = await qmp.execute('query-status')
 print(f"VM status: {res['status']}")

 await qmp.disconnect()

asyncio.run(main())

The above script will connect to the UNIX socket located at
qmp.sock, query the VM’s runstate, then print it out
to the terminal:

> python3 example.py
VM status: running

For more complex usages, especially those that make full advantage of
monitoring asynchronous events, refer to the online documentation [https://qemu-project.gitlab.io/python-qemu-qmp/] or type
import qemu.qmp; help(qemu.qmp) in your Python terminal of choice.

Contributing

Contributions are quite welcome! Please file bugs using the GitLab
issue tracker [https://gitlab.com/qemu-project/python-qemu-qmp/-/issues]. This
project will accept GitLab merge requests, but due to the close
association with the QEMU project, there are some additional guidelines:

	Please use the “Signed-off-by” tag in your commit messages. See
https://wiki.linuxfoundation.org/dco for more information on this
requirement.

	This repository won’t squash merge requests into a single commit on
pull; each commit should seek to be self-contained (within reason).

	Owing to the above, each commit sent as part of a merge request
should not introduce any temporary regressions, even if fixed later
in the same merge request. This is done to preserve bisectability.

	Please associate every merge request with at least one GitLab issue [https://gitlab.com/qemu-project/python-qemu-qmp/-/issues]. This
helps with generating Changelog text and staying organized. Thank you
🙇

Developing

Optional packages necessary for running code quality analysis for this
package can be installed with the optional dependency group “devel”:
pip install qemu.qmp[devel].

make develop can be used to install this package in editable mode
(to the current environment) and bring in testing dependencies in one
command.

make check can be used to run the available tests. Consult
make help for other targets and tests that make sense for different
occasions.

Before submitting a pull request, consider running
make check-tox && make check-pipenv locally to spot any issues that will
cause the CI to fail. These checks use their own virtual environments [https://docs.python.org/3/tutorial/venv.html] and won’t pollute your working
space.

Stability and Versioning

This package uses a major.minor.micro SemVer versioning [https://semver.org/], with the following additional semantics during
the alpha/beta period (Major version 0):

This package treats 0.0.z versions as “alpha” versions. Each micro
version update may change the API incompatibly. Early users are advised
to pin against explicit versions, but check for updates often.

A planned 0.1.z version will introduce the first “beta”, whereafter each
micro update will be backwards compatible, but each minor update will
not be. The first beta version will be released after legacy.py is
removed, and the API is tentatively “stable”.

Thereafter, normal SemVer [https://semver.org/] / PEP440 [https://peps.python.org/pep-0440/] rules will apply; micro updates
will always be bugfixes, and minor updates will be reserved for
backwards compatible feature changes.

Changelog

0.0.1 (2022-07-20)

	Initial public release. (API is still subject to change!)

Overview

QEMU Monitor Protocol (QMP) development library & tooling.

This package provides a fairly low-level class for communicating
asynchronously with QMP protocol servers, as implemented by QEMU, the
QEMU Guest Agent, and the QEMU Storage Daemon.

QMPClient provides the main functionality of this package. All errors
raised by this library derive from QMPError, see qmp.error for
additional detail. See qmp.events for an in-depth tutorial on
managing QMP events.

Classes

QMPClient

	
class qemu.qmp.QMPClient(name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Bases: AsyncProtocol[Message], Events

Implements a QMP client connection.

QMPClient can be used to either connect or listen to a QMP server,
but always acts as the QMP client.

	Parameters

	name – Optional nickname for the connection, used to differentiate
instances when logging.

Basic script-style usage looks like this:

import asyncio
from qemu.qmp import QMPClient

async def main():
 qmp = QMPClient('my_virtual_machine_name')
 await qmp.connect(('127.0.0.1', 1234))
 ...
 res = await qmp.execute('query-block')
 ...
 await qmp.disconnect()

asyncio.run(main())

A more advanced example that starts to take advantage of asyncio
might look like this:

class Client:
 def __init__(self, name: str):
 self.qmp = QMPClient(name)

 async def watch_events(self):
 try:
 async for event in self.qmp.events:
 print(f"Event: {event['event']}")
 except asyncio.CancelledError:
 return

 async def run(self, address='/tmp/qemu.socket'):
 await self.qmp.connect(address)
 asyncio.create_task(self.watch_events())
 await self.qmp.runstate_changed.wait()
 await self.disconnect()

See qmp.events for more detail on event handling patterns.

	
logger: logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] = <Logger qemu.qmp.qmp_client (WARNING)>

	Logger object used for debugging messages.

	
await_greeting: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not to await a greeting after establishing a connection.
Defaults to True; QGA servers expect this to be False.

	
negotiate: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not to perform capabilities negotiation upon
connection. Implies await_greeting. Defaults to True; QGA
servers expect this to be False.

	
property greeting: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Greeting]

	The Greeting from the QMP server, if any.

Defaults to None, and will be set after a greeting is
received during the connection process. It is reset at the start
of each connection attempt.

	
async execute_msg(msg: Message) → object [https://docs.python.org/3/library/functions.html#object]

	Execute a QMP command on the server and return its value.

	Parameters

	msg – The QMP Message to execute.

	Returns

	The command execution return value from the server. The type of
object returned depends on the command that was issued,
though most in QEMU return a dict [https://docs.python.org/3/library/stdtypes.html#dict].

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the QMP Message does not have either the ‘execute’ or
‘exec-oob’ fields set.

	ExecuteError – When the server returns an error response.

	ExecInterruptedError – If the connection was disrupted before
receiving a reply from the server.

	
classmethod make_execute_msg(cmd: str [https://docs.python.org/3/library/stdtypes.html#str], arguments: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]] = None, oob: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Message

	Create an executable message to be sent by execute_msg later.

	Parameters

	
	cmd – QMP command name.

	arguments – Arguments (if any). Must be JSON-serializable.

	oob – If True [https://docs.python.org/3/library/constants.html#True], execute “out of band” [https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L116].

	Returns

	A QMP Message that can be executed with execute_msg().

	
async execute(cmd: str [https://docs.python.org/3/library/stdtypes.html#str], arguments: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]] = None, oob: bool [https://docs.python.org/3/library/functions.html#bool] = False) → object [https://docs.python.org/3/library/functions.html#object]

	Execute a QMP command on the server and return its value.

	Parameters

	
	cmd – QMP command name.

	arguments – Arguments (if any). Must be JSON-serializable.

	oob – If True [https://docs.python.org/3/library/constants.html#True], execute “out of band” [https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L116].

	Returns

	The command execution return value from the server. The type of
object returned depends on the command that was issued,
though most in QEMU return a dict [https://docs.python.org/3/library/stdtypes.html#dict].

	Raises

	
	ExecuteError – When the server returns an error response.

	ExecInterruptedError – If the connection was disrupted before
receiving a reply from the server.

	
send_fd_scm(fd: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Send a file descriptor to the remote via SCM_RIGHTS.

This method does not close the file descriptor.

	Parameters

	fd – The file descriptor to send to QEMU.

This is an advanced feature of QEMU where file descriptors can
be passed from client to server. This is usually used as a
security measure to isolate the QEMU process from being able to
open its own files. See the QMP commands getfd and
add-fd for more information.

See socket.socket.sendmsg [https://docs.python.org/3/library/socket.html#socket.socket.sendmsg] for more information on the Python
implementation for sending file descriptors over a UNIX socket.

	
async accept() → None [https://docs.python.org/3/library/constants.html#None]

	Accept an incoming connection and begin processing message queues.

Used after a previous call to start_server() to accept an
incoming connection. If this call fails, runstate is
guaranteed to be set back to IDLE.

	Raises

	
	StateError – When the Runstate is not CONNECTING.

	QMPError – When start_server() was not called first.

	ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases,
the wrapped exception will be OSError [https://docs.python.org/3/library/exceptions.html#OSError] or EOFError [https://docs.python.org/3/library/exceptions.html#EOFError]. If a
protocol-level failure occurs while establishing a new
session, the wrapped error may also be an QMPError.

	
async connect(address: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], ssl: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Connect to the server and begin processing message queues.

If this call fails, runstate is guaranteed to be set back to IDLE.

	Parameters

	
	address – Address to connect to; UNIX socket path or TCP address/port.

	ssl – SSL context to use, if any.

	Raises

	
	StateError – When the Runstate is not IDLE.

	ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases,
the wrapped exception will be OSError [https://docs.python.org/3/library/exceptions.html#OSError] or EOFError [https://docs.python.org/3/library/exceptions.html#EOFError]. If a
protocol-level failure occurs while establishing a new
session, the wrapped error may also be an QMPError.

	
async disconnect() → None [https://docs.python.org/3/library/constants.html#None]

	Disconnect and wait for all tasks to fully stop.

If there was an exception that caused the reader/writers to
terminate prematurely, it will be raised here.

	Raises

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When the reader or writer terminate unexpectedly. You can
expect to see EOFError [https://docs.python.org/3/library/exceptions.html#EOFError] if the server hangs up, or
OSError [https://docs.python.org/3/library/exceptions.html#OSError] for connection-related issues. If there was a QMP
protocol-level problem, ProtocolError will be seen.

	
listen(*listeners: EventListener) → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][None [https://docs.python.org/3/library/constants.html#None]]

	Context manager: Temporarily listen with an EventListener.

Accepts one or more EventListener objects and registers them,
activating them for the duration of the context block.

EventListener objects will have any pending events in their
FIFO queue cleared upon exiting the context block, when they are
deactivated.

	Parameters

	*listeners – One or more EventListeners to activate.

	Raises

	ListenerError – If the given listener(s) are already active.

	
listener(names: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = (), event_filter: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Message], bool [https://docs.python.org/3/library/functions.html#bool]]] = None) → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][EventListener]

	Context manager: Temporarily listen with a new EventListener.

Creates an EventListener object and registers it, activating
it for the duration of the context block.

	Parameters

	
	names – One or more names of events to listen for.
When not provided, listen for ALL events.

	event_filter – An optional event filtering function.
When names are also provided, this acts as a secondary filter.

	Returns

	The newly created and active EventListener.

	
register_listener(listener: EventListener) → None [https://docs.python.org/3/library/constants.html#None]

	Register and activate an EventListener.

	Parameters

	listener – The listener to activate.

	Raises

	ListenerError – If the given listener is already registered.

	
remove_listener(listener: EventListener) → None [https://docs.python.org/3/library/constants.html#None]

	Unregister and deactivate an EventListener.

The removed listener will have its pending events cleared via
clear(). The listener can be re-registered later when
desired.

	Parameters

	listener – The listener to deactivate.

	Raises

	ListenerError – If the given listener is not registered.

	
property runstate: Runstate

	The current Runstate of the connection.

	
async runstate_changed() → Runstate

	Wait for the runstate to change, then return that Runstate.

	
async start_server(address: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], ssl: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Start listening for an incoming connection, but do not wait for a peer.

This method starts listening for an incoming connection, but
does not block waiting for a peer. This call will return
immediately after binding and listening on a socket. A later
call to accept() must be made in order
to finalize the incoming connection.

	Parameters

	
	address – Address to listen on; UNIX socket path or TCP address/port.

	ssl – SSL context to use, if any.

	Raises

	
	StateError – When the Runstate is not IDLE.

	ConnectError – When the server could not start listening on this address.

This exception will wrap a more concrete one. In most cases,
the wrapped exception will be OSError [https://docs.python.org/3/library/exceptions.html#OSError].

	
async start_server_and_accept(address: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], ssl: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Accept a connection and begin processing message queues.

If this call fails, runstate is guaranteed to be set back to
IDLE. This method is precisely equivalent to calling
start_server() followed by accept().

	Parameters

	
	address – Address to listen on; UNIX socket path or TCP address/port.

	ssl – SSL context to use, if any.

	Raises

	
	StateError – When the Runstate is not IDLE.

	ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases,
the wrapped exception will be OSError [https://docs.python.org/3/library/exceptions.html#OSError] or EOFError [https://docs.python.org/3/library/exceptions.html#EOFError]. If a
protocol-level failure occurs while establishing a new
session, the wrapped error may also be a QMPError.

	
name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The nickname for this connection, if any. This name is used
for differentiating instances in debug output.

	
events: EventListener

	Default, all-events EventListener. See qmp.events for more info.

Message

	
class qemu.qmp.Message(value: Union [https://docs.python.org/3/library/typing.html#typing.Union][bytes [https://docs.python.org/3/library/stdtypes.html#bytes], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]] = b'{}', *, eager: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Bases: MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]

Represents a single QMP protocol message.

QMP uses JSON objects as its basic communicative unit; so this
Python object is a MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]. It may
be instantiated from either another mapping (like a dict [https://docs.python.org/3/library/stdtypes.html#dict]), or from
raw bytes [https://docs.python.org/3/library/stdtypes.html#bytes] that still need to be deserialized.

Once instantiated, it may be treated like any other
MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]:

>>> msg = Message(b'{"hello": "world"}')
>>> assert msg['hello'] == 'world'
>>> msg['id'] = 'foobar'
>>> print(msg)
{
 "hello": "world",
 "id": "foobar"
}

It can be converted to bytes [https://docs.python.org/3/library/stdtypes.html#bytes]:

>>> msg = Message({"hello": "world"})
>>> print(bytes(msg))
b'{"hello":"world","id":"foobar"}'

Or back into a garden-variety dict [https://docs.python.org/3/library/stdtypes.html#dict]:

>>> dict(msg)
{'hello': 'world'}

Or pretty-printed:

>>> print(str(msg))
{
 "hello": "world"
}

	Parameters

	
	value – Initial value, if any.

	eager – When True [https://docs.python.org/3/library/constants.html#True], attempt to serialize or deserialize the initial value
immediately, so that conversion exceptions are raised during
the call to __init__().

EventListener

	
class qemu.qmp.EventListener(names: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, event_filter: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Message], bool [https://docs.python.org/3/library/functions.html#bool]]] = None)

	Selectively listens for events with runtime configurable filtering.

This class is designed to be directly usable for the most common cases,
but it can be extended to provide more rigorous control.

	Parameters

	
	names – One or more names of events to listen for.
When not provided, listen for ALL events.

	event_filter – An optional event filtering function.
When names are also provided, this acts as a secondary filter.

When names and event_filter are both provided, the names
will be filtered first, and then the filter function will be called
second. The event filter function can assume that the format of the
event is a known format.

	
names: Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Primary event filter, based on one or more event names.

	
event_filter: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Message], bool [https://docs.python.org/3/library/functions.html#bool]]]

	Optional, secondary event filter.

	
property history: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Message, ...]

	A read-only history of all events seen so far.

This represents every event, including those not yet witnessed
via get() or async for. It persists between clear()
calls and is immutable.

	
accept(event: Message) → bool [https://docs.python.org/3/library/functions.html#bool]

	Determine if this listener accepts this event.

This method determines which events will appear in the stream.
The default implementation simply checks the event against the
list of names and the event_filter to decide if this
EventListener accepts a given event. It can be
overridden/extended to provide custom listener behavior.

User code is not expected to need to invoke this method.

	Parameters

	event – The event under consideration.

	Returns

	True [https://docs.python.org/3/library/constants.html#True], if this listener accepts this event.

	
async put(event: Message) → None [https://docs.python.org/3/library/constants.html#None]

	Conditionally put a new event into the FIFO queue.

This method is not designed to be invoked from user code, and it
should not need to be overridden. It is a public interface so
that QMPClient has an interface by which it can inform
registered listeners of new events.

The event will be put into the queue if
accept() returns True [https://docs.python.org/3/library/constants.html#True].

	Parameters

	event – The new event to put into the FIFO queue.

	
async get() → Message

	Wait for the very next event in this stream.

If one is already available, return that one.

	
empty() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return True [https://docs.python.org/3/library/constants.html#True] if there are no pending events.

	
clear() → List [https://docs.python.org/3/library/typing.html#typing.List][Message]

	Clear this listener of all pending events.

Called when an EventListener is being unregistered, this clears the
pending FIFO queue synchronously. It can be also be used to
manually clear any pending events, if desired.

	Returns

	The cleared events, if any.

Warning

Take care when discarding events. Cleared events will be
silently tossed on the floor. All events that were ever
accepted by this listener are visible in history().

Runstate

	
class qemu.qmp.Runstate(value)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Protocol session runstate.

	
IDLE = 0

	Fully quiesced and disconnected.

	
CONNECTING = 1

	In the process of connecting or establishing a session.

	
RUNNING = 2

	Fully connected and active session.

	
DISCONNECTING = 3

	In the process of disconnecting.
Runstate may be returned to IDLE by calling disconnect().

Exceptions

	
exception qemu.qmp.QMPError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Abstract error class for all errors originating from this package.

	
exception qemu.qmp.StateError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], state: Runstate, required: Runstate)

	Bases: QMPError

An API command (connect, execute, etc) was issued at an inappropriate time.

This error is raised when a command like
connect() is called when the client is
already connected.

	Parameters

	
	error_message – Human-readable string describing the state violation.

	state – The actual Runstate seen at the time of the violation.

	required – The Runstate required to process this command.

	
exception qemu.qmp.ConnectError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], exc: Exception [https://docs.python.org/3/library/exceptions.html#Exception])

	Bases: QMPError

Raised when the initial connection process has failed.

This Exception always wraps a “root cause” exception that can be
interrogated for additional information.

For example, when connecting to a non-existent socket:

await qmp.connect('not_found.sock')
ConnectError: Failed to establish connection:
[Errno 2] No such file or directory

	Parameters

	
	error_message – Human-readable string describing the error.

	exc – The root-cause exception.

	
error_message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable error string

	
exc: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	Wrapped root cause exception

	
exception qemu.qmp.ExecuteError(error_response: ErrorResponse, sent: Message, received: Message)

	Bases: QMPError

Exception raised by QMPClient.execute() on RPC failure.

This exception is raised when the server received, interpreted, and
replied to a command successfully; but the command itself returned a
failure status.

For example:

await qmp.execute('block-dirty-bitmap-add',
 {'node': 'foo', 'name': 'my_bitmap'})
qemu.qmp.qmp_client.ExecuteError:
Cannot find device='foo' nor node-name='foo'

	Parameters

	
	error_response – The RPC error response object.

	sent – The sent RPC message that caused the failure.

	received – The raw RPC error reply received.

	
sent: Message

	The sent Message that caused the failure

	
received: Message

	The received Message that indicated failure

	
error: ErrorResponse

	The parsed error response

	
error_class: str [https://docs.python.org/3/library/stdtypes.html#str]

	The QMP error class

	
exception qemu.qmp.ExecInterruptedError

	Bases: QMPError

Exception raised by execute() (et al) when an RPC is interrupted.

This error is raised when an execute() statement could not be
completed. This can occur because the connection itself was
terminated before a reply was received. The true cause of the
interruption will be available via disconnect().

The QMP protocol does not make it possible to know if a command
succeeded or failed after such an event; the client will need to
query the server to determine the state of the server on a
case-by-case basis.

For example, ECONNRESET might look like this:

try:
 await qmp.execute('query-block')
 # ExecInterruptedError: Disconnected
except ExecInterruptedError:
 await qmp.disconnect()
 # ConnectionResetError: [Errno 104] Connection reset by peer

Error classes

QMP Error Classes

This package seeks to provide semantic error classes that are intended
to be used directly by clients when they would like to handle particular
semantic failures (e.g. “failed to connect”) without needing to know the
enumeration of possible reasons for that failure.

QMPError serves as the ancestor for all exceptions raised by this
package, and is suitable for use in handling semantic errors from this
library. In most cases, individual public methods will attempt to catch
and re-encapsulate various exceptions to provide a semantic
error-handling interface.

QMP Exception Hierarchy Reference

Exception [https://docs.python.org/3/library/exceptions.html#Exception]

+– QMPError

+– ConnectError

+– StateError

+– ExecInterruptedError

+– ExecuteError

+– ListenerError

+– ProtocolError

+– DeserializationError

+– UnexpectedTypeError

+– ServerParseError

+– BadReplyError

+– GreetingError

+– NegotiationError

	
exception qemu.qmp.error.QMPError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Abstract error class for all errors originating from this package.

	
exception qemu.qmp.error.ProtocolError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: QMPError

Abstract error class for protocol failures.

Semantically, these errors are generally the fault of either the
protocol server or as a result of a bug in this library.

	Parameters

	error_message – Human-readable string describing the error.

	
error_message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable error message, without any prefix.

Events

QMP Events and EventListeners

Asynchronous QMP uses EventListener objects to listen for events. An
EventListener is a FIFO event queue that can be pre-filtered to listen
for only specific events. Each EventListener instance receives its own
copy of events that it hears, so events may be consumed without fear or
worry for depriving other listeners of events they need to hear.

EventListener Tutorial

In all of the following examples, we assume that we have a QMPClient
instantiated named qmp that is already connected. For example:

from qemu.qmp import QMPClient

qmp = QMPClient('example-vm')
await qmp.connect('127.0.0.1', 1234)

listener() context blocks with one name

The most basic usage is by using the listener() context manager to
construct them:

with qmp.listener('STOP') as listener:
 await qmp.execute('stop')
 await listener.get()

The listener is active only for the duration of the ‘with’ block. This
instance listens only for ‘STOP’ events.

listener() context blocks with two or more names

Multiple events can be selected for by providing any Iterable[str]:

with qmp.listener(('STOP', 'RESUME')) as listener:
 await qmp.execute('stop')
 event = await listener.get()
 assert event['event'] == 'STOP'

 await qmp.execute('cont')
 event = await listener.get()
 assert event['event'] == 'RESUME'

listener() context blocks with no names

By omitting names entirely, you can listen to ALL events.

with qmp.listener() as listener:
 await qmp.execute('stop')
 event = await listener.get()
 assert event['event'] == 'STOP'

This isn’t a very good use case for this feature: In a non-trivial
running system, we may not know what event will arrive next. Grabbing
the top of a FIFO queue returning multiple kinds of events may be prone
to error.

Using async iterators to retrieve events

If you’d like to simply watch what events happen to arrive, you can use
the listener as an async iterator:

with qmp.listener() as listener:
 async for event in listener:
 print(f"Event arrived: {event['event']}")

This is analogous to the following code:

with qmp.listener() as listener:
 while True:
 event = listener.get()
 print(f"Event arrived: {event['event']}")

This event stream will never end, so these blocks will never
terminate. Even if the QMP connection errors out prematurely, this
listener will go silent without raising an error.

Using asyncio.Task to concurrently retrieve events

Since a listener’s event stream will never terminate, it is not likely
useful to use that form in a script. For longer-running clients, we can
create event handlers by using asyncio.Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task] to create concurrent
coroutines:

async def print_events(listener):
 try:
 async for event in listener:
 print(f"Event arrived: {event['event']}")
 except asyncio.CancelledError:
 return

with qmp.listener() as listener:
 task = asyncio.Task(print_events(listener))
 await qmp.execute('stop')
 await qmp.execute('cont')
 task.cancel()
 await task

However, there is no guarantee that these events will be received by the
time we leave this context block. Once the context block is exited, the
listener will cease to hear any new events, and becomes inert.

Be mindful of the timing: the above example will probably– but does
not guarantee– that both STOP/RESUMED events will be printed. The
example below outlines how to use listeners outside of a context block.

Using register_listener() and remove_listener()

To create a listener with a longer lifetime, beyond the scope of a
single block, create a listener and then call register_listener():

class MyClient:
 def __init__(self, qmp):
 self.qmp = qmp
 self.listener = EventListener()

 async def print_events(self):
 try:
 async for event in self.listener:
 print(f"Event arrived: {event['event']}")
 except asyncio.CancelledError:
 return

 async def run(self):
 self.task = asyncio.Task(self.print_events)
 self.qmp.register_listener(self.listener)
 await qmp.execute('stop')
 await qmp.execute('cont')

 async def stop(self):
 self.task.cancel()
 await self.task
 self.qmp.remove_listener(self.listener)

The listener can be deactivated by using remove_listener(). When it is
removed, any possible pending events are cleared and it can be
re-registered at a later time.

Using the built-in all events listener

The QMPClient object creates its own default listener named
events that can be used for the same purpose without
having to create your own:

async def print_events(listener):
 try:
 async for event in listener:
 print(f"Event arrived: {event['event']}")
 except asyncio.CancelledError:
 return

task = asyncio.Task(print_events(qmp.events))

await qmp.execute('stop')
await qmp.execute('cont')

task.cancel()
await task

Using both .get() and async iterators

The async iterator and get() methods pull events from the same FIFO
queue. If you mix the usage of both, be aware: Events are emitted
precisely once per listener.

If multiple contexts try to pull events from the same listener instance,
events are still emitted only precisely once.

This restriction can be lifted by creating additional listeners.

Creating multiple listeners

Additional EventListener objects can be created at-will. Each one
receives its own copy of events, with separate FIFO event queues.

my_listener = EventListener()
qmp.register_listener(my_listener)

await qmp.execute('stop')
copy1 = await my_listener.get()
copy2 = await qmp.events.get()

assert copy1 == copy2

In this example, we await an event from both a user-created
EventListener and the built-in events listener. Both receive the same
event.

Clearing listeners

EventListener objects can be cleared, clearing all events seen thus far:

await qmp.execute('stop')
discarded = qmp.events.clear()
await qmp.execute('cont')
event = await qmp.events.get()
assert event['event'] == 'RESUME'
assert discarded[0]['event'] == 'STOP'

EventListener objects are FIFO queues. If events are not consumed,
they will remain in the queue until they are witnessed or discarded via
clear(). FIFO queues will be drained automatically upon leaving a
context block, or when calling remove_listener().

Any events removed from the queue in this fashion will be returned by
the clear call.

Accessing listener history

EventListener objects record their history. Even after being cleared,
you can obtain a record of all events seen so far:

await qmp.execute('stop')
await qmp.execute('cont')
qmp.events.clear()

assert len(qmp.events.history) == 2
assert qmp.events.history[0]['event'] == 'STOP'
assert qmp.events.history[1]['event'] == 'RESUME'

The history is updated immediately and does not require the event to be
witnessed first.

Using event filters

EventListener objects can be given complex filtering criteria if names
are not sufficient:

def job1_filter(event) -> bool:
 event_data = event.get('data', {})
 event_job_id = event_data.get('id')
 return event_job_id == "job1"

with qmp.listener('JOB_STATUS_CHANGE', job1_filter) as listener:
 await qmp.execute('blockdev-backup', arguments={'job-id': 'job1', ...})
 async for event in listener:
 if event['data']['status'] == 'concluded':
 break

These filters might be most useful when parameterized. EventListener
objects expect a function that takes only a single argument (the raw
event, as a Message) and returns a bool; True if the event should be
accepted into the stream. You can create a function that adapts this
signature to accept configuration parameters:

def job_filter(job_id: str) -> EventFilter:
 def filter(event: Message) -> bool:
 return event['data']['id'] == job_id
 return filter

with qmp.listener('JOB_STATUS_CHANGE', job_filter('job2')) as listener:
 await qmp.execute('blockdev-backup', arguments={'job-id': 'job2', ...})
 async for event in listener:
 if event['data']['status'] == 'concluded':
 break

Activating an existing listener with listen()

Listeners with complex, long configurations can also be created manually
and activated temporarily by using listen() instead of listener():

listener = EventListener(('BLOCK_JOB_COMPLETED', 'BLOCK_JOB_CANCELLED',
 'BLOCK_JOB_ERROR', 'BLOCK_JOB_READY',
 'BLOCK_JOB_PENDING', 'JOB_STATUS_CHANGE'))

with qmp.listen(listener):
 await qmp.execute('blockdev-backup', arguments={'job-id': 'job3', ...})
 async for event in listener:
 print(event)
 if event['event'] == 'BLOCK_JOB_COMPLETED':
 break

Any events that are not witnessed by the time the block is left will be
cleared from the queue; entering the block is an implicit
register_listener() and leaving the block is an implicit
remove_listener().

Activating multiple existing listeners with listen()

While listener() is only capable of creating a single listener,
listen() is capable of activating multiple listeners simultaneously:

def job_filter(job_id: str) -> EventFilter:
 def filter(event: Message) -> bool:
 return event['data']['id'] == job_id
 return filter

jobA = EventListener('JOB_STATUS_CHANGE', job_filter('jobA'))
jobB = EventListener('JOB_STATUS_CHANGE', job_filter('jobB'))

with qmp.listen(jobA, jobB):
 qmp.execute('blockdev-create', arguments={'job-id': 'jobA', ...})
 qmp.execute('blockdev-create', arguments={'job-id': 'jobB', ...})

 async for event in jobA.get():
 if event['data']['status'] == 'concluded':
 break
 async for event in jobB.get():
 if event['data']['status'] == 'concluded':
 break

Note that in the above example, we explicitly wait on jobA to conclude
first, and then wait for jobB to do the same. All we have guaranteed is
that the code that waits for jobA will not accidentally consume the
event intended for the jobB waiter.

Extending the EventListener class

In the case that a more specialized EventListener is desired to
provide either more functionality or more compact syntax for specialized
cases, it can be extended.

One of the key methods to extend or override is
accept(). The default implementation checks an
incoming message for:

	A qualifying name, if any names were
specified at initialization time

	That event_filter() returns True.

This can be modified however you see fit to change the criteria for
inclusion in the stream.

For convenience, a JobListener class could be created that simply
bakes in configuration so it does not need to be repeated:

class JobListener(EventListener):
 def __init__(self, job_id: str):
 super().__init__(('BLOCK_JOB_COMPLETED', 'BLOCK_JOB_CANCELLED',
 'BLOCK_JOB_ERROR', 'BLOCK_JOB_READY',
 'BLOCK_JOB_PENDING', 'JOB_STATUS_CHANGE'))
 self.job_id = job_id

 def accept(self, event) -> bool:
 if not super().accept(event):
 return False
 if event['event'] in ('BLOCK_JOB_PENDING', 'JOB_STATUS_CHANGE'):
 return event['data']['id'] == job_id
 return event['data']['device'] == job_id

From here on out, you can conjure up a custom-purpose listener that
listens only for job-related events for a specific job-id easily:

listener = JobListener('job4')
with qmp.listener(listener):
 await qmp.execute('blockdev-backup', arguments={'job-id': 'job4', ...})
 async for event in listener:
 print(event)
 if event['event'] == 'BLOCK_JOB_COMPLETED':
 break

Experimental Interfaces & Design Issues

These interfaces are not ones I am sure I will keep or otherwise modify
heavily.

qmp.listen()’s type signature

listen() does not return anything, because it was assumed the caller
already had a handle to the listener. However, for
qmp.listen(EventListener()) forms, the caller will not have saved a
handle to the listener.

Because this function can accept many listeners, I found it hard to
accurately type in a way where it could be used in both “one” or “many”
forms conveniently and in a statically type-safe manner.

Ultimately, I removed the return altogether, but perhaps with more time
I can work out a way to re-add it.

API Reference

	
class qemu.qmp.events.EventListener(names: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, event_filter: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Message], bool [https://docs.python.org/3/library/functions.html#bool]]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Selectively listens for events with runtime configurable filtering.

This class is designed to be directly usable for the most common cases,
but it can be extended to provide more rigorous control.

	Parameters

	
	names – One or more names of events to listen for.
When not provided, listen for ALL events.

	event_filter – An optional event filtering function.
When names are also provided, this acts as a secondary filter.

When names and event_filter are both provided, the names
will be filtered first, and then the filter function will be called
second. The event filter function can assume that the format of the
event is a known format.

	
accept(event: Message) → bool [https://docs.python.org/3/library/functions.html#bool]

	Determine if this listener accepts this event.

This method determines which events will appear in the stream.
The default implementation simply checks the event against the
list of names and the event_filter to decide if this
EventListener accepts a given event. It can be
overridden/extended to provide custom listener behavior.

User code is not expected to need to invoke this method.

	Parameters

	event – The event under consideration.

	Returns

	True [https://docs.python.org/3/library/constants.html#True], if this listener accepts this event.

	
clear() → List [https://docs.python.org/3/library/typing.html#typing.List][Message]

	Clear this listener of all pending events.

Called when an EventListener is being unregistered, this clears the
pending FIFO queue synchronously. It can be also be used to
manually clear any pending events, if desired.

	Returns

	The cleared events, if any.

Warning

Take care when discarding events. Cleared events will be
silently tossed on the floor. All events that were ever
accepted by this listener are visible in history().

	
empty() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return True [https://docs.python.org/3/library/constants.html#True] if there are no pending events.

	
event_filter: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Message], bool [https://docs.python.org/3/library/functions.html#bool]]]

	Optional, secondary event filter.

	
async get() → Message

	Wait for the very next event in this stream.

If one is already available, return that one.

	
property history: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Message, ...]

	A read-only history of all events seen so far.

This represents every event, including those not yet witnessed
via get() or async for. It persists between clear()
calls and is immutable.

	
names: Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Primary event filter, based on one or more event names.

	
async put(event: Message) → None [https://docs.python.org/3/library/constants.html#None]

	Conditionally put a new event into the FIFO queue.

This method is not designed to be invoked from user code, and it
should not need to be overridden. It is a public interface so
that QMPClient has an interface by which it can inform
registered listeners of new events.

The event will be put into the queue if
accept() returns True [https://docs.python.org/3/library/constants.html#True].

	Parameters

	event – The new event to put into the FIFO queue.

	
class qemu.qmp.events.Events

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Events is a mix-in class that adds event functionality to the QMP class.

It’s designed specifically as a mix-in for QMPClient, and it
relies upon the class it is being mixed into having a ‘logger’
property.

	
events: EventListener

	Default, all-events EventListener. See qmp.events for more info.

	
listen(*listeners: EventListener) → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][None [https://docs.python.org/3/library/constants.html#None]]

	Context manager: Temporarily listen with an EventListener.

Accepts one or more EventListener objects and registers them,
activating them for the duration of the context block.

EventListener objects will have any pending events in their
FIFO queue cleared upon exiting the context block, when they are
deactivated.

	Parameters

	*listeners – One or more EventListeners to activate.

	Raises

	ListenerError – If the given listener(s) are already active.

	
listener(names: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = (), event_filter: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Message], bool [https://docs.python.org/3/library/functions.html#bool]]] = None) → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][EventListener]

	Context manager: Temporarily listen with a new EventListener.

Creates an EventListener object and registers it, activating
it for the duration of the context block.

	Parameters

	
	names – One or more names of events to listen for.
When not provided, listen for ALL events.

	event_filter – An optional event filtering function.
When names are also provided, this acts as a secondary filter.

	Returns

	The newly created and active EventListener.

	
register_listener(listener: EventListener) → None [https://docs.python.org/3/library/constants.html#None]

	Register and activate an EventListener.

	Parameters

	listener – The listener to activate.

	Raises

	ListenerError – If the given listener is already registered.

	
remove_listener(listener: EventListener) → None [https://docs.python.org/3/library/constants.html#None]

	Unregister and deactivate an EventListener.

The removed listener will have its pending events cleared via
clear(). The listener can be re-registered later when
desired.

	Parameters

	listener – The listener to deactivate.

	Raises

	ListenerError – If the given listener is not registered.

	
exception qemu.qmp.events.ListenerError

	Bases: QMPError

Generic error class for EventListener-related problems.

Legacy API

(Legacy) Sync QMP Wrapper

This module provides the QEMUMonitorProtocol class, which is a
synchronous wrapper around QMPClient.

Its design closely resembles that of the original QEMUMonitorProtocol
class, originally written by Luiz Capitulino. It is provided here for
compatibility with scripts inside the QEMU source tree that expect the
old interface.

	
class qemu.qmp.legacy.QEMUMonitorProtocol(address: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], server: bool [https://docs.python.org/3/library/functions.html#bool] = False, nickname: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provide an API to connect to QEMU via QEMU Monitor Protocol (QMP)
and then allow to handle commands and events.

	Parameters

	
	address – QEMU address, can be either a unix socket path (string)
or a tuple in the form (address, port) for a TCP
connection

	server – Act as the socket server. (See ‘accept’)

	nickname – Optional nickname used for logging.

	
accept(timeout: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = 15.0) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Await connection from QMP Monitor and perform capabilities negotiation.

	Parameters

	timeout – timeout in seconds (nonnegative float number, or None).
If None, there is no timeout, and this may block forever.

	Returns

	QMP greeting dict

	Raises

	ConnectError – on connection errors

	
clear_events() → None [https://docs.python.org/3/library/constants.html#None]

	Clear current list of pending events.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close the connection.

	
cmd(name: str [https://docs.python.org/3/library/stdtypes.html#str], args: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]] = None, cmd_id: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][object [https://docs.python.org/3/library/functions.html#object]] = None) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Build a QMP command and send it to the QMP Monitor.

	Parameters

	
	name – command name (string)

	args – command arguments (dict)

	cmd_id – command id (dict, list, string or int)

	
cmd_obj(qmp_cmd: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Send a QMP command to the QMP Monitor.

	Parameters

	qmp_cmd – QMP command to be sent as a Python dict

	Returns

	QMP response as a Python dict

	
command(cmd: str [https://docs.python.org/3/library/stdtypes.html#str], **kwds: object [https://docs.python.org/3/library/functions.html#object]) → object [https://docs.python.org/3/library/functions.html#object]

	Build and send a QMP command to the monitor, report errors if any

	
connect(negotiate: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Connect to the QMP Monitor and perform capabilities negotiation.

	Returns

	QMP greeting dict, or None if negotiate is false

	Raises

	ConnectError – on connection errors

	
get_events(wait: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], float [https://docs.python.org/3/library/functions.html#float]] = False) → List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Get a list of QMP events and clear all pending events.

	Parameters

	wait – If False or 0, do not wait. Return None if no events ready.
If True, wait until we have at least one event.
Otherwise, wait for up to the specified number of seconds for at
least one event.

	Raises

	asyncio.TimeoutError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError] – When a timeout is requested and the timeout period elapses.

	Returns

	A list of QMP events.

	
classmethod parse_address(address: str [https://docs.python.org/3/library/stdtypes.html#str]) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]]

	Parse a string into a QMP address.

Figure out if the argument is in the port:host form.
If it’s not, it’s probably a file path.

	
pull_event(wait: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], float [https://docs.python.org/3/library/functions.html#float]] = False) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Pulls a single event.

	Parameters

	wait – If False or 0, do not wait. Return None if no events ready.
If True, wait forever until the next event.
Otherwise, wait for the specified number of seconds.

	Raises

	asyncio.TimeoutError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError] – When a timeout is requested and the timeout period elapses.

	Returns

	The first available QMP event, or None.

	
send_fd_scm(fd: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Send a file descriptor to the remote via SCM_RIGHTS.

	
settimeout(timeout: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) → None [https://docs.python.org/3/library/constants.html#None]

	Set the timeout for QMP RPC execution.

This timeout affects the cmd, cmd_obj, and command methods.
The accept, pull_event and get_events methods have their
own configurable timeouts.

	Parameters

	timeout – timeout in seconds, or None.
None will wait indefinitely.

	
exception qemu.qmp.legacy.QMPBadPortError

	Bases: QMPError

Unable to parse socket address: Port was non-numerical.

	
qemu.qmp.legacy.QMPMessage

	QMPMessage is an entire QMP message of any kind.

alias of Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
qemu.qmp.legacy.QMPObject

	QMPObject is any object in a QMP message.

alias of Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]

	
qemu.qmp.legacy.QMPReturnValue

	QMPReturnValue is the ‘return’ value of a command.

QMP Messages

QMP Message Format

This module provides the Message class, which represents a single QMP
message sent to or from the server.

	
class qemu.qmp.message.Message(value: Union [https://docs.python.org/3/library/typing.html#typing.Union][bytes [https://docs.python.org/3/library/stdtypes.html#bytes], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]] = b'{}', *, eager: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Bases: MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]

Represents a single QMP protocol message.

QMP uses JSON objects as its basic communicative unit; so this
Python object is a MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]. It may
be instantiated from either another mapping (like a dict [https://docs.python.org/3/library/stdtypes.html#dict]), or from
raw bytes [https://docs.python.org/3/library/stdtypes.html#bytes] that still need to be deserialized.

Once instantiated, it may be treated like any other
MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]:

>>> msg = Message(b'{"hello": "world"}')
>>> assert msg['hello'] == 'world'
>>> msg['id'] = 'foobar'
>>> print(msg)
{
 "hello": "world",
 "id": "foobar"
}

It can be converted to bytes [https://docs.python.org/3/library/stdtypes.html#bytes]:

>>> msg = Message({"hello": "world"})
>>> print(bytes(msg))
b'{"hello":"world","id":"foobar"}'

Or back into a garden-variety dict [https://docs.python.org/3/library/stdtypes.html#dict]:

>>> dict(msg)
{'hello': 'world'}

Or pretty-printed:

>>> print(str(msg))
{
 "hello": "world"
}

	Parameters

	
	value – Initial value, if any.

	eager – When True [https://docs.python.org/3/library/constants.html#True], attempt to serialize or deserialize the initial value
immediately, so that conversion exceptions are raised during
the call to __init__().

	
exception qemu.qmp.message.DeserializationError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], raw: bytes [https://docs.python.org/3/library/stdtypes.html#bytes])

	Bases: ProtocolError

A QMP message was not understood as JSON.

When this Exception is raised, __cause__ will be set to the
json.JSONDecodeError [https://docs.python.org/3/library/json.html#json.JSONDecodeError] Exception, which can be interrogated for
further details.

	Parameters

	
	error_message – Human-readable string describing the error.

	raw – The raw bytes [https://docs.python.org/3/library/stdtypes.html#bytes] that prompted the failure.

	
raw: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	The raw bytes [https://docs.python.org/3/library/stdtypes.html#bytes] that were not understood as JSON.

	
error_message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable error message, without any prefix.

	
exception qemu.qmp.message.UnexpectedTypeError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], value: object [https://docs.python.org/3/library/functions.html#object])

	Bases: ProtocolError

A QMP message was JSON, but not a JSON object.

	Parameters

	
	error_message – Human-readable string describing the error.

	value – The deserialized JSON value that wasn’t an object.

	
error_message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable error message, without any prefix.

	
value: object [https://docs.python.org/3/library/functions.html#object]

	The JSON value that was expected to be an object.

QMP Data Models

QMP Data Models

This module provides simplistic data classes that represent the few
structures that the QMP spec mandates; they are used to verify incoming
data to make sure it conforms to spec.

	
class qemu.qmp.models.Model(raw: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract data model, representing some QMP object of some kind.

	Parameters

	raw – The raw object to be validated.

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If any required fields are absent.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If any required fields have the wrong type.

	
class qemu.qmp.models.Greeting(raw: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Bases: Model

Defined in qmp-spec.txt, section 2.2, “Server Greeting”.

See 2.2 Server Greeting [https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L61]
for details.

	Parameters

	raw – The raw Greeting object.

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If any required fields are absent.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If any required fields have the wrong type.

	
QMP: QMPGreeting

	‘QMP’ member

	
class qemu.qmp.models.QMPGreeting(raw: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Bases: Model

Defined in qmp-spec.txt, section 2.2, “Server Greeting”.

	Parameters

	raw – The raw QMPGreeting object.

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If any required fields are absent.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If any required fields have the wrong type.

	
version: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]

	‘version’ member

	
capabilities: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][object [https://docs.python.org/3/library/functions.html#object]]

	‘capabilities’ member

	
class qemu.qmp.models.ErrorResponse(raw: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Bases: Model

Defined in qmp-spec.txt, section 2.4.2, “error”.

	Parameters

	raw – The raw ErrorResponse object.

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If any required fields are absent.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If any required fields have the wrong type.

	
error: ErrorInfo

	‘error’ member

	
id: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][object [https://docs.python.org/3/library/functions.html#object]]

	‘id’ member

	
class qemu.qmp.models.ErrorInfo(raw: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]])

	Bases: Model

Defined in qmp-spec.txt, section 2.4.2, “error”.

	Parameters

	raw – The raw ErrorInfo object.

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If any required fields are absent.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If any required fields have the wrong type.

	
class_: str [https://docs.python.org/3/library/stdtypes.html#str]

	‘class’ member, with an underscore to avoid conflicts in Python.

	
desc: str [https://docs.python.org/3/library/stdtypes.html#str]

	‘desc’ member

Asyncio Protocol

Generic Asynchronous Message-based Protocol Support

This module provides a generic framework for sending and receiving
messages over an asyncio stream. AsyncProtocol is an abstract class
that implements the core mechanisms of a simple send/receive protocol,
and is designed to be extended.

In this package, it is used as the implementation for the QMPClient
class.

	
class qemu.qmp.protocol.Runstate(value)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Protocol session runstate.

	
IDLE = 0

	Fully quiesced and disconnected.

	
CONNECTING = 1

	In the process of connecting or establishing a session.

	
RUNNING = 2

	Fully connected and active session.

	
DISCONNECTING = 3

	In the process of disconnecting.
Runstate may be returned to IDLE by calling disconnect().

	
exception qemu.qmp.protocol.ConnectError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], exc: Exception [https://docs.python.org/3/library/exceptions.html#Exception])

	Bases: QMPError

Raised when the initial connection process has failed.

This Exception always wraps a “root cause” exception that can be
interrogated for additional information.

For example, when connecting to a non-existent socket:

await qmp.connect('not_found.sock')
ConnectError: Failed to establish connection:
[Errno 2] No such file or directory

	Parameters

	
	error_message – Human-readable string describing the error.

	exc – The root-cause exception.

	
error_message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable error string

	
exc: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	Wrapped root cause exception

	
exception qemu.qmp.protocol.StateError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], state: Runstate, required: Runstate)

	Bases: QMPError

An API command (connect, execute, etc) was issued at an inappropriate time.

This error is raised when a command like
connect() is called when the client is
already connected.

	Parameters

	
	error_message – Human-readable string describing the state violation.

	state – The actual Runstate seen at the time of the violation.

	required – The Runstate required to process this command.

	
qemu.qmp.protocol.require(required_state: Runstate) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[F], F]

	Decorator: protect a method so it can only be run in a certain Runstate.

	Parameters

	required_state – The Runstate required to invoke this method.

	Raises

	StateError – When the required Runstate is not met.

	
class qemu.qmp.protocol.AsyncProtocol(name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Bases: Generic [https://docs.python.org/3/library/typing.html#typing.Generic][T]

AsyncProtocol implements a generic async message-based protocol.

This protocol assumes the basic unit of information transfer between
client and server is a “message”, the details of which are left up
to the implementation. It assumes the sending and receiving of these
messages is full-duplex and not necessarily correlated; i.e. it
supports asynchronous inbound messages.

It is designed to be extended by a specific protocol which provides
the implementations for how to read and send messages. These must be
defined in _do_recv() and _do_send(), respectively.

Other callbacks have a default implementation, but are intended to be
either extended or overridden:

	
	_establish_session:
	The base implementation starts the reader/writer tasks.
A protocol implementation can override this call, inserting
actions to be taken prior to starting the reader/writer tasks
before the super() call; actions needing to occur afterwards
can be written after the super() call.

	
	_on_message:
	Actions to be performed when a message is received.

	
	_cb_outbound:
	Logging/Filtering hook for all outbound messages.

	
	_cb_inbound:
	Logging/Filtering hook for all inbound messages.
This hook runs before _on_message().

	Parameters

	name – Name used for logging messages, if any. By default, messages
will log to ‘qemu.qmp.protocol’, but each individual connection
can be given its own logger by giving it a name; messages will
then log to ‘qemu.qmp.protocol.${name}’.

	
_limit = 65536

	

	
name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The nickname for this connection, if any. This name is used
for differentiating instances in debug output.

	
logger = <Logger qemu.qmp.protocol (WARNING)>

	Logger object for debugging messages from this connection.

	
_dc_task: Optional[asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future][None [https://docs.python.org/3/library/constants.html#None]]]

	Disconnect task. The disconnect implementation runs in a task
so that asynchronous disconnects (initiated by the
reader/writer) are allowed to wait for the reader/writers to
exit.

	
property runstate: Runstate

	The current Runstate of the connection.

	
async runstate_changed() → Runstate

	Wait for the runstate to change, then return that Runstate.

	
async start_server_and_accept(address: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], ssl: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Accept a connection and begin processing message queues.

If this call fails, runstate is guaranteed to be set back to
IDLE. This method is precisely equivalent to calling
start_server() followed by accept().

	Parameters

	
	address – Address to listen on; UNIX socket path or TCP address/port.

	ssl – SSL context to use, if any.

	Raises

	
	StateError – When the Runstate is not IDLE.

	ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases,
the wrapped exception will be OSError [https://docs.python.org/3/library/exceptions.html#OSError] or EOFError [https://docs.python.org/3/library/exceptions.html#EOFError]. If a
protocol-level failure occurs while establishing a new
session, the wrapped error may also be a QMPError.

	
async start_server(address: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], ssl: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Start listening for an incoming connection, but do not wait for a peer.

This method starts listening for an incoming connection, but
does not block waiting for a peer. This call will return
immediately after binding and listening on a socket. A later
call to accept() must be made in order
to finalize the incoming connection.

	Parameters

	
	address – Address to listen on; UNIX socket path or TCP address/port.

	ssl – SSL context to use, if any.

	Raises

	
	StateError – When the Runstate is not IDLE.

	ConnectError – When the server could not start listening on this address.

This exception will wrap a more concrete one. In most cases,
the wrapped exception will be OSError [https://docs.python.org/3/library/exceptions.html#OSError].

	
async accept() → None [https://docs.python.org/3/library/constants.html#None]

	Accept an incoming connection and begin processing message queues.

Used after a previous call to start_server() to accept an
incoming connection. If this call fails, runstate is
guaranteed to be set back to IDLE.

	Raises

	
	StateError – When the Runstate is not CONNECTING.

	QMPError – When start_server() was not called first.

	ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases,
the wrapped exception will be OSError [https://docs.python.org/3/library/exceptions.html#OSError] or EOFError [https://docs.python.org/3/library/exceptions.html#EOFError]. If a
protocol-level failure occurs while establishing a new
session, the wrapped error may also be an QMPError.

	
async connect(address: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], ssl: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Connect to the server and begin processing message queues.

If this call fails, runstate is guaranteed to be set back to IDLE.

	Parameters

	
	address – Address to connect to; UNIX socket path or TCP address/port.

	ssl – SSL context to use, if any.

	Raises

	
	StateError – When the Runstate is not IDLE.

	ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases,
the wrapped exception will be OSError [https://docs.python.org/3/library/exceptions.html#OSError] or EOFError [https://docs.python.org/3/library/exceptions.html#EOFError]. If a
protocol-level failure occurs while establishing a new
session, the wrapped error may also be an QMPError.

	
async disconnect() → None [https://docs.python.org/3/library/constants.html#None]

	Disconnect and wait for all tasks to fully stop.

If there was an exception that caused the reader/writers to
terminate prematurely, it will be raised here.

	Raises

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When the reader or writer terminate unexpectedly. You can
expect to see EOFError [https://docs.python.org/3/library/exceptions.html#EOFError] if the server hangs up, or
OSError [https://docs.python.org/3/library/exceptions.html#OSError] for connection-related issues. If there was a QMP
protocol-level problem, ProtocolError will be seen.

	
async _session_guard(coro: Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][None [https://docs.python.org/3/library/constants.html#None]], emsg: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Async guard function used to roll back to IDLE on any error.

On any Exception, the state machine will be reset back to
IDLE. Most Exceptions will be wrapped with ConnectError, but
BaseException [https://docs.python.org/3/library/exceptions.html#BaseException] events will be left alone (This includes
asyncio.CancelledError, even prior to Python 3.8).

	Parameters

	error_message – Human-readable string describing what connection phase failed.

	Raises

	
	BaseException [https://docs.python.org/3/library/exceptions.html#BaseException] – When BaseException [https://docs.python.org/3/library/exceptions.html#BaseException] occurs in the guarded block.

	ConnectError – When any other error is encountered in the guarded block.

	
property _runstate_event: Event

	

	
_set_state(state: Runstate) → None [https://docs.python.org/3/library/constants.html#None]

	Change the Runstate of the protocol connection.

Signals the runstate_changed event.

	
async _stop_server() → None [https://docs.python.org/3/library/constants.html#None]

	Stop listening for / accepting new incoming connections.

	
async _incoming(reader: StreamReader, writer: StreamWriter) → None [https://docs.python.org/3/library/constants.html#None]

	Accept an incoming connection and signal the upper_half.

This method does the minimum necessary to accept a single
incoming connection. It signals back to the upper_half ASAP so
that any errors during session initialization can occur
naturally in the caller’s stack.

	Parameters

	
	reader – Incoming asyncio.StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader]

	writer – Incoming asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]

	
async _do_start_server(address: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], ssl: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Start listening for an incoming connection, but do not wait for a peer.

This method starts listening for an incoming connection, but does not
block waiting for a peer. This call will return immediately after
binding and listening to a socket. A later call to accept() must be
made in order to finalize the incoming connection.

	Parameters

	
	address – Address to listen on; UNIX socket path or TCP address/port.

	ssl – SSL context to use, if any.

	Raises

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – For stream-related errors.

	
async _do_accept() → None [https://docs.python.org/3/library/constants.html#None]

	Wait for and accept an incoming connection.

Requires that we have not yet accepted an incoming connection
from the upper_half, but it’s OK if the server is no longer
running because the bottom_half has already accepted the
connection.

	
async _do_connect(address: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], ssl: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Acting as the transport client, initiate a connection to a server.

	Parameters

	
	address – Address to connect to; UNIX socket path or TCP address/port.

	ssl – SSL context to use, if any.

	Raises

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – For stream-related errors.

	
async _establish_session() → None [https://docs.python.org/3/library/constants.html#None]

	Establish a new session.

Starts the readers/writer tasks; subclasses may perform their
own negotiations here. The Runstate will be RUNNING upon
successful conclusion.

	
_schedule_disconnect() → None [https://docs.python.org/3/library/constants.html#None]

	Initiate a disconnect; idempotent.

This method is used both in the upper-half as a direct
consequence of disconnect(), and in the bottom-half in the
case of unhandled exceptions in the reader/writer tasks.

It can be invoked no matter what the runstate is.

	
async _wait_disconnect() → None [https://docs.python.org/3/library/constants.html#None]

	Waits for a previously scheduled disconnect to finish.

This method will gather any bottom half exceptions and re-raise
the one that occurred first; presuming it to be the root cause
of any subsequent Exceptions. It is intended to be used in the
upper half of the call chain.

	Raises

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – Arbitrary exception re-raised on behalf of the reader/writer.

	
_cleanup() → None [https://docs.python.org/3/library/constants.html#None]

	Fully reset this object to a clean state and return to IDLE.

	
async _bh_disconnect() → None [https://docs.python.org/3/library/constants.html#None]

	Disconnect and cancel all outstanding tasks.

It is designed to be called from its task context,
_dc_task. By running in its own task,
it is free to wait on any pending actions that may still need to
occur in either the reader or writer tasks.

	
async _bh_flush_writer() → None [https://docs.python.org/3/library/constants.html#None]

	

	
async _bh_close_stream(error_pathway: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	

	
async _bh_loop_forever(async_fn: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][None [https://docs.python.org/3/library/constants.html#None]]], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Run one of the bottom-half methods in a loop forever.

If the bottom half ever raises any exception, schedule a
disconnect that will terminate the entire loop.

	Parameters

	
	async_fn – The bottom-half method to run in a loop.

	name – The name of this task, used for logging.

	
async _bh_send_message() → None [https://docs.python.org/3/library/constants.html#None]

	Wait for an outgoing message, then send it.

Designed to be run in _bh_loop_forever().

	
async _bh_recv_message() → None [https://docs.python.org/3/library/constants.html#None]

	Wait for an incoming message and call _on_message to route it.

Designed to be run in _bh_loop_forever().

	
_cb_outbound(msg: T) → T

	Callback: outbound message hook.

This is intended for subclasses to be able to add arbitrary
hooks to filter or manipulate outgoing messages. The base
implementation does nothing but log the message without any
manipulation of the message.

	Parameters

	msg – raw outbound message

	Returns

	final outbound message

	
_cb_inbound(msg: T) → T

	Callback: inbound message hook.

This is intended for subclasses to be able to add arbitrary
hooks to filter or manipulate incoming messages. The base
implementation does nothing but log the message without any
manipulation of the message.

This method does not “handle” incoming messages; it is a filter.
The actual “endpoint” for incoming messages is _on_message().

	Parameters

	msg – raw inbound message

	Returns

	processed inbound message

	
async _readline() → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Wait for a newline from the incoming reader.

This method is provided as a convenience for upper-layer
protocols, as many are line-based.

This method may return a sequence of bytes without a trailing
newline if EOF occurs, but some bytes were received. In this
case, the next call will raise EOFError [https://docs.python.org/3/library/exceptions.html#EOFError]. It is assumed that
the layer 5 protocol will decide if there is anything meaningful
to be done with a partial message.

	Raises

	
	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – For stream-related errors.

	EOFError [https://docs.python.org/3/library/exceptions.html#EOFError] – If the reader stream is at EOF and there are no bytes to return.

	Returns

	bytes, including the newline.

	
async _do_recv() → T

	Abstract: Read from the stream and return a message.

Very low-level; intended to only be called by _recv().

	
async _recv() → T

	Read an arbitrary protocol message.

Warning

This method is intended primarily for _bh_recv_message()
to use in an asynchronous task loop. Using it outside of
this loop will “steal” messages from the normal routing
mechanism. It is safe to use prior to _establish_session(),
but should not be used otherwise.

This method uses _do_recv() to retrieve the raw message, and
then transforms it using _cb_inbound().

	Returns

	A single (filtered, processed) protocol message.

	
_do_send(msg: T) → None [https://docs.python.org/3/library/constants.html#None]

	Abstract: Write a message to the stream.

Very low-level; intended to only be called by _send().

	
async _send(msg: T) → None [https://docs.python.org/3/library/constants.html#None]

	Send an arbitrary protocol message.

This method will transform any outgoing messages according to
_cb_outbound().

Warning

Like _recv(), this method is intended to be called by
the writer task loop that processes outgoing
messages. Calling it directly may circumvent logic
implemented by the caller meant to correlate outgoing and
incoming messages.

	Raises

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – For problems with the underlying stream.

	
async _on_message(msg: T) → None [https://docs.python.org/3/library/constants.html#None]

	Called to handle the receipt of a new message.

Caution

This is executed from within the reader loop, so be advised
that waiting on either the reader or writer task will lead
to deadlock. Additionally, any unhandled exceptions will
directly cause the loop to halt, so logic may be best-kept
to a minimum if at all possible.

	Parameters

	msg – The incoming message, already logged/filtered.

QMP Protocol

QMP Protocol Implementation

This module provides the QMPClient class, which can be used to connect
and send commands to a QMP server such as QEMU. The QMP class can be
used to either connect to a listening server, or used to listen and
accept an incoming connection from that server.

	
exception qemu.qmp.qmp_client.GreetingError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], exc: Exception [https://docs.python.org/3/library/exceptions.html#Exception])

	Bases: _WrappedProtocolError

An exception occurred during the Greeting phase.

	Parameters

	
	error_message – Human-readable string describing the error.

	exc – The root-cause exception.

	
error_message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable error message, without any prefix.

	
exception qemu.qmp.qmp_client.NegotiationError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], exc: Exception [https://docs.python.org/3/library/exceptions.html#Exception])

	Bases: _WrappedProtocolError

An exception occurred during the Negotiation phase.

	Parameters

	
	error_message – Human-readable string describing the error.

	exc – The root-cause exception.

	
error_message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable error message, without any prefix.

	
exception qemu.qmp.qmp_client.ExecuteError(error_response: ErrorResponse, sent: Message, received: Message)

	Bases: QMPError

Exception raised by QMPClient.execute() on RPC failure.

This exception is raised when the server received, interpreted, and
replied to a command successfully; but the command itself returned a
failure status.

For example:

await qmp.execute('block-dirty-bitmap-add',
 {'node': 'foo', 'name': 'my_bitmap'})
qemu.qmp.qmp_client.ExecuteError:
Cannot find device='foo' nor node-name='foo'

	Parameters

	
	error_response – The RPC error response object.

	sent – The sent RPC message that caused the failure.

	received – The raw RPC error reply received.

	
sent: Message

	The sent Message that caused the failure

	
received: Message

	The received Message that indicated failure

	
error: ErrorResponse

	The parsed error response

	
error_class: str [https://docs.python.org/3/library/stdtypes.html#str]

	The QMP error class

	
exception qemu.qmp.qmp_client.ExecInterruptedError

	Bases: QMPError

Exception raised by execute() (et al) when an RPC is interrupted.

This error is raised when an execute() statement could not be
completed. This can occur because the connection itself was
terminated before a reply was received. The true cause of the
interruption will be available via disconnect().

The QMP protocol does not make it possible to know if a command
succeeded or failed after such an event; the client will need to
query the server to determine the state of the server on a
case-by-case basis.

For example, ECONNRESET might look like this:

try:
 await qmp.execute('query-block')
 # ExecInterruptedError: Disconnected
except ExecInterruptedError:
 await qmp.disconnect()
 # ConnectionResetError: [Errno 104] Connection reset by peer

	
exception qemu.qmp.qmp_client.ServerParseError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], msg: Message)

	Bases: _MsgProtocolError

The Server sent a Message indicating parsing failure.

i.e. A reply has arrived from the server, but it is missing the “ID”
field, indicating a parsing error.

	Parameters

	
	error_message – Human-readable string describing the error.

	msg – The QMP Message that caused the error.

	
error_message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable error message, without any prefix.

	
exception qemu.qmp.qmp_client.BadReplyError(error_message: str [https://docs.python.org/3/library/stdtypes.html#str], msg: Message, sent: Message)

	Bases: _MsgProtocolError

An execution reply was successfully routed, but not understood.

If a QMP message is received with an ‘id’ field to allow it to be
routed, but is otherwise malformed, this exception will be raised.

A reply message is malformed if it is missing either the ‘return’ or
‘error’ keys, or if the ‘error’ value has missing keys or members of
the wrong type.

	Parameters

	
	error_message – Human-readable string describing the error.

	msg – The malformed reply that was received.

	sent – The message that was sent that prompted the error.

	
sent

	The sent Message that caused the failure

	
error_message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable error message, without any prefix.

	
class qemu.qmp.qmp_client.QMPClient(name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Bases: AsyncProtocol[Message], Events

Implements a QMP client connection.

QMPClient can be used to either connect or listen to a QMP server,
but always acts as the QMP client.

	Parameters

	name – Optional nickname for the connection, used to differentiate
instances when logging.

Basic script-style usage looks like this:

import asyncio
from qemu.qmp import QMPClient

async def main():
 qmp = QMPClient('my_virtual_machine_name')
 await qmp.connect(('127.0.0.1', 1234))
 ...
 res = await qmp.execute('query-block')
 ...
 await qmp.disconnect()

asyncio.run(main())

A more advanced example that starts to take advantage of asyncio
might look like this:

class Client:
 def __init__(self, name: str):
 self.qmp = QMPClient(name)

 async def watch_events(self):
 try:
 async for event in self.qmp.events:
 print(f"Event: {event['event']}")
 except asyncio.CancelledError:
 return

 async def run(self, address='/tmp/qemu.socket'):
 await self.qmp.connect(address)
 asyncio.create_task(self.watch_events())
 await self.qmp.runstate_changed.wait()
 await self.disconnect()

See qmp.events for more detail on event handling patterns.

	
logger: logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] = <Logger qemu.qmp.qmp_client (WARNING)>

	Logger object used for debugging messages.

	
await_greeting: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not to await a greeting after establishing a connection.
Defaults to True; QGA servers expect this to be False.

	
negotiate: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not to perform capabilities negotiation upon
connection. Implies await_greeting. Defaults to True; QGA
servers expect this to be False.

	
property greeting: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Greeting]

	The Greeting from the QMP server, if any.

Defaults to None, and will be set after a greeting is
received during the connection process. It is reset at the start
of each connection attempt.

	
async execute_msg(msg: Message) → object [https://docs.python.org/3/library/functions.html#object]

	Execute a QMP command on the server and return its value.

	Parameters

	msg – The QMP Message to execute.

	Returns

	The command execution return value from the server. The type of
object returned depends on the command that was issued,
though most in QEMU return a dict [https://docs.python.org/3/library/stdtypes.html#dict].

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the QMP Message does not have either the ‘execute’ or
‘exec-oob’ fields set.

	ExecuteError – When the server returns an error response.

	ExecInterruptedError – If the connection was disrupted before
receiving a reply from the server.

	
classmethod make_execute_msg(cmd: str [https://docs.python.org/3/library/stdtypes.html#str], arguments: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]] = None, oob: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Message

	Create an executable message to be sent by execute_msg later.

	Parameters

	
	cmd – QMP command name.

	arguments – Arguments (if any). Must be JSON-serializable.

	oob – If True [https://docs.python.org/3/library/constants.html#True], execute “out of band” [https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L116].

	Returns

	A QMP Message that can be executed with execute_msg().

	
async execute(cmd: str [https://docs.python.org/3/library/stdtypes.html#str], arguments: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]] = None, oob: bool [https://docs.python.org/3/library/functions.html#bool] = False) → object [https://docs.python.org/3/library/functions.html#object]

	Execute a QMP command on the server and return its value.

	Parameters

	
	cmd – QMP command name.

	arguments – Arguments (if any). Must be JSON-serializable.

	oob – If True [https://docs.python.org/3/library/constants.html#True], execute “out of band” [https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L116].

	Returns

	The command execution return value from the server. The type of
object returned depends on the command that was issued,
though most in QEMU return a dict [https://docs.python.org/3/library/stdtypes.html#dict].

	Raises

	
	ExecuteError – When the server returns an error response.

	ExecInterruptedError – If the connection was disrupted before
receiving a reply from the server.

	
send_fd_scm(fd: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Send a file descriptor to the remote via SCM_RIGHTS.

This method does not close the file descriptor.

	Parameters

	fd – The file descriptor to send to QEMU.

This is an advanced feature of QEMU where file descriptors can
be passed from client to server. This is usually used as a
security measure to isolate the QEMU process from being able to
open its own files. See the QMP commands getfd and
add-fd for more information.

See socket.socket.sendmsg [https://docs.python.org/3/library/socket.html#socket.socket.sendmsg] for more information on the Python
implementation for sending file descriptors over a UNIX socket.

	
name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The nickname for this connection, if any. This name is used
for differentiating instances in debug output.

	
events: EventListener

	Default, all-events EventListener. See qmp.events for more info.

Utilities

Miscellaneous Utilities

This module provides asyncio utilities and compatibility wrappers for
Python 3.6 to provide some features that otherwise become available in
Python 3.7+.

Various logging and debugging utilities are also provided, such as
exception_summary() and pretty_traceback(), used primarily for
adding information into the logging stream.

	
async qemu.qmp.util.flush(writer: StreamWriter) → None [https://docs.python.org/3/library/constants.html#None]

	Utility function to ensure an asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter] is fully drained.

asyncio.StreamWriter.drain [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter.drain] only promises we will return to below
the “high-water mark”. This function ensures we flush the entire
buffer – by setting the high water mark to 0 and then calling
drain. The flow control limits are restored after the call is
completed.

	
qemu.qmp.util.upper_half(func: T) → T

	Do-nothing decorator that annotates a method as an “upper-half” method.

These methods must not call bottom-half functions directly, but can
schedule them to run.

	
qemu.qmp.util.bottom_half(func: T) → T

	Do-nothing decorator that annotates a method as a “bottom-half” method.

These methods must take great care to handle their own exceptions whenever
possible. If they go unhandled, they will cause termination of the loop.

These methods do not, in general, have the ability to directly
report information to a caller’s context and will usually be
collected as an asyncio.Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task] result instead.

They must not call upper-half functions directly.

	
qemu.qmp.util.create_task(coro: Coroutine [https://docs.python.org/3/library/typing.html#typing.Coroutine][Any [https://docs.python.org/3/library/typing.html#typing.Any], Any [https://docs.python.org/3/library/typing.html#typing.Any], T], loop: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractEventLoop] = None) → asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future][T]

	Python 3.6-compatible asyncio.create_task [https://docs.python.org/3/library/asyncio-task.html#asyncio.create_task] wrapper.

	Parameters

	
	coro – The coroutine to execute in a task.

	loop – Optionally, the loop to create the task in.

	Returns

	An asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] object.

	
qemu.qmp.util.is_closing(writer: StreamWriter) → bool [https://docs.python.org/3/library/functions.html#bool]

	Python 3.6-compatible asyncio.StreamWriter.is_closing [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter.is_closing] wrapper.

	Parameters

	writer – The asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter] object.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the writer is closing, or closed.

	
async qemu.qmp.util.wait_closed(writer: StreamWriter) → None [https://docs.python.org/3/library/constants.html#None]

	Python 3.6-compatible asyncio.StreamWriter.wait_closed [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter.wait_closed] wrapper.

	Parameters

	writer – The asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter] to wait on.

	
qemu.qmp.util.asyncio_run(coro: Coroutine [https://docs.python.org/3/library/typing.html#typing.Coroutine][Any [https://docs.python.org/3/library/typing.html#typing.Any], Any [https://docs.python.org/3/library/typing.html#typing.Any], T], *, debug: bool [https://docs.python.org/3/library/functions.html#bool] = False) → T

	Python 3.6-compatible asyncio.run [https://docs.python.org/3/library/asyncio-task.html#asyncio.run] wrapper.

	Parameters

	coro – A coroutine to execute now.

	Returns

	The return value from the coroutine.

	
qemu.qmp.util.exception_summary(exc: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a summary string of an arbitrary exception.

It will be of the form “ExceptionType: Error Message” if the error
string is non-empty, and just “ExceptionType” otherwise.

This code is based on CPython’s implementation of
traceback.TracebackException.format_exception_only [https://docs.python.org/3/library/traceback.html#traceback.TracebackException.format_exception_only].

	
qemu.qmp.util.pretty_traceback(prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = ' | ') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Formats the current traceback, indented to provide visual distinction.

This is useful for printing a traceback within a traceback for
debugging purposes when encapsulating errors to deliver them up the
stack; when those errors are printed, this helps provide a nice
visual grouping to quickly identify the parts of the error that
belong to the inner exception.

	Parameters

	prefix – The prefix to append to each line of the traceback.

	Returns

	A string, formatted something like the following:

| Traceback (most recent call last):
| File "foobar.py", line 42, in arbitrary_example
| foo.baz()
| ArbitraryError: [Errno 42] Something bad happened!

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 qemu	

 	
 	
 qemu.qmp.error	

 	
 	
 qemu.qmp.events	

 	
 	
 qemu.qmp.legacy	

 	
 	
 qemu.qmp.message	

 	
 	
 qemu.qmp.models	

 	
 	
 qemu.qmp.protocol	

 	
 	
 qemu.qmp.qmp_client	

 	
 	
 qemu.qmp.util	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | U
 | V
 | W

_

 	
 	_bh_close_stream() (qemu.qmp.protocol.AsyncProtocol method)

 	_bh_disconnect() (qemu.qmp.protocol.AsyncProtocol method)

 	_bh_flush_writer() (qemu.qmp.protocol.AsyncProtocol method)

 	_bh_loop_forever() (qemu.qmp.protocol.AsyncProtocol method)

 	_bh_recv_message() (qemu.qmp.protocol.AsyncProtocol method)

 	_bh_send_message() (qemu.qmp.protocol.AsyncProtocol method)

 	_cb_inbound() (qemu.qmp.protocol.AsyncProtocol method)

 	_cb_outbound() (qemu.qmp.protocol.AsyncProtocol method)

 	_cleanup() (qemu.qmp.protocol.AsyncProtocol method)

 	_dc_task (qemu.qmp.protocol.AsyncProtocol attribute)

 	_do_accept() (qemu.qmp.protocol.AsyncProtocol method)

 	_do_connect() (qemu.qmp.protocol.AsyncProtocol method)

 	_do_recv() (qemu.qmp.protocol.AsyncProtocol method)

 	_do_send() (qemu.qmp.protocol.AsyncProtocol method)

 	
 	_do_start_server() (qemu.qmp.protocol.AsyncProtocol method)

 	_establish_session() (qemu.qmp.protocol.AsyncProtocol method)

 	_incoming() (qemu.qmp.protocol.AsyncProtocol method)

 	_limit (qemu.qmp.protocol.AsyncProtocol attribute)

 	_on_message() (qemu.qmp.protocol.AsyncProtocol method)

 	_readline() (qemu.qmp.protocol.AsyncProtocol method)

 	_recv() (qemu.qmp.protocol.AsyncProtocol method)

 	_runstate_event (qemu.qmp.protocol.AsyncProtocol property)

 	_schedule_disconnect() (qemu.qmp.protocol.AsyncProtocol method)

 	_send() (qemu.qmp.protocol.AsyncProtocol method)

 	_session_guard() (qemu.qmp.protocol.AsyncProtocol method)

 	_set_state() (qemu.qmp.protocol.AsyncProtocol method)

 	_stop_server() (qemu.qmp.protocol.AsyncProtocol method)

 	_wait_disconnect() (qemu.qmp.protocol.AsyncProtocol method)

A

 	
 	accept() (qemu.qmp.events.EventListener method)

 	(qemu.qmp.legacy.QEMUMonitorProtocol method)

 	(qemu.qmp.protocol.AsyncProtocol method)

 	
 	asyncio_run() (in module qemu.qmp.util)

 	AsyncProtocol (class in qemu.qmp.protocol)

 	await_greeting (qemu.qmp.qmp_client.QMPClient attribute)

B

 	
 	BadReplyError

 	
 	bottom_half() (in module qemu.qmp.util)

C

 	
 	capabilities (qemu.qmp.models.QMPGreeting attribute)

 	class_ (qemu.qmp.models.ErrorInfo attribute)

 	clear() (qemu.qmp.events.EventListener method)

 	clear_events() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	close() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	cmd() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	
 	cmd_obj() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	command() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	connect() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	(qemu.qmp.protocol.AsyncProtocol method)

 	ConnectError

 	CONNECTING (qemu.qmp.protocol.Runstate attribute)

 	create_task() (in module qemu.qmp.util)

D

 	
 	desc (qemu.qmp.models.ErrorInfo attribute)

 	DeserializationError

 	
 	disconnect() (qemu.qmp.protocol.AsyncProtocol method)

 	DISCONNECTING (qemu.qmp.protocol.Runstate attribute)

E

 	
 	empty() (qemu.qmp.events.EventListener method)

 	error (qemu.qmp.models.ErrorResponse attribute)

 	(qemu.qmp.qmp_client.ExecuteError attribute)

 	error_class (qemu.qmp.qmp_client.ExecuteError attribute)

 	error_message (qemu.qmp.error.ProtocolError attribute)

 	(qemu.qmp.message.DeserializationError attribute)

 	(qemu.qmp.message.UnexpectedTypeError attribute)

 	(qemu.qmp.protocol.ConnectError attribute)

 	(qemu.qmp.qmp_client.BadReplyError attribute)

 	(qemu.qmp.qmp_client.GreetingError attribute)

 	(qemu.qmp.qmp_client.NegotiationError attribute)

 	(qemu.qmp.qmp_client.ServerParseError attribute)

 	
 	ErrorInfo (class in qemu.qmp.models)

 	ErrorResponse (class in qemu.qmp.models)

 	event_filter (qemu.qmp.events.EventListener attribute)

 	EventListener (class in qemu.qmp.events)

 	Events (class in qemu.qmp.events)

 	events (qemu.qmp.events.Events attribute)

 	(qemu.qmp.qmp_client.QMPClient attribute)

 	exc (qemu.qmp.protocol.ConnectError attribute)

 	exception_summary() (in module qemu.qmp.util)

 	ExecInterruptedError

 	execute() (qemu.qmp.qmp_client.QMPClient method)

 	execute_msg() (qemu.qmp.qmp_client.QMPClient method)

 	ExecuteError

F

 	
 	flush() (in module qemu.qmp.util)

G

 	
 	get() (qemu.qmp.events.EventListener method)

 	get_events() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	
 	Greeting (class in qemu.qmp.models)

 	greeting (qemu.qmp.qmp_client.QMPClient property)

 	GreetingError

H

 	
 	history (qemu.qmp.events.EventListener property)

I

 	
 	id (qemu.qmp.models.ErrorResponse attribute)

 	
 	IDLE (qemu.qmp.protocol.Runstate attribute)

 	is_closing() (in module qemu.qmp.util)

L

 	
 	listen() (qemu.qmp.events.Events method)

 	listener() (qemu.qmp.events.Events method)

 	
 	ListenerError

 	logger (qemu.qmp.protocol.AsyncProtocol attribute)

 	(qemu.qmp.qmp_client.QMPClient attribute)

M

 	
 	make_execute_msg() (qemu.qmp.qmp_client.QMPClient class method)

 	Message (class in qemu.qmp.message)

 	Model (class in qemu.qmp.models)

 	
 module

 	qemu.qmp.error

 	qemu.qmp.events

 	qemu.qmp.legacy

 	qemu.qmp.message

 	qemu.qmp.models

 	qemu.qmp.protocol

 	qemu.qmp.qmp_client

 	qemu.qmp.util

N

 	
 	name (qemu.qmp.protocol.AsyncProtocol attribute)

 	(qemu.qmp.qmp_client.QMPClient attribute)

 	
 	names (qemu.qmp.events.EventListener attribute)

 	negotiate (qemu.qmp.qmp_client.QMPClient attribute)

 	NegotiationError

P

 	
 	parse_address() (qemu.qmp.legacy.QEMUMonitorProtocol class method)

 	pretty_traceback() (in module qemu.qmp.util)

 	
 	ProtocolError

 	pull_event() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	put() (qemu.qmp.events.EventListener method)

Q

 	
 	
 qemu.qmp.error

 	module

 	
 qemu.qmp.events

 	module

 	
 qemu.qmp.legacy

 	module

 	
 qemu.qmp.message

 	module

 	
 qemu.qmp.models

 	module

 	
 qemu.qmp.protocol

 	module

 	
 	
 qemu.qmp.qmp_client

 	module

 	
 qemu.qmp.util

 	module

 	QEMUMonitorProtocol (class in qemu.qmp.legacy)

 	QMP (qemu.qmp.models.Greeting attribute)

 	QMPBadPortError

 	QMPClient (class in qemu.qmp.qmp_client)

 	QMPError

 	QMPGreeting (class in qemu.qmp.models)

 	QMPMessage (in module qemu.qmp.legacy)

 	QMPObject (in module qemu.qmp.legacy)

 	QMPReturnValue (in module qemu.qmp.legacy)

R

 	
 	raw (qemu.qmp.message.DeserializationError attribute)

 	received (qemu.qmp.qmp_client.ExecuteError attribute)

 	register_listener() (qemu.qmp.events.Events method)

 	remove_listener() (qemu.qmp.events.Events method)

 	
 	require() (in module qemu.qmp.protocol)

 	RUNNING (qemu.qmp.protocol.Runstate attribute)

 	Runstate (class in qemu.qmp.protocol)

 	runstate (qemu.qmp.protocol.AsyncProtocol property)

 	runstate_changed() (qemu.qmp.protocol.AsyncProtocol method)

S

 	
 	send_fd_scm() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	(qemu.qmp.qmp_client.QMPClient method)

 	sent (qemu.qmp.qmp_client.BadReplyError attribute)

 	(qemu.qmp.qmp_client.ExecuteError attribute)

 	
 	ServerParseError

 	settimeout() (qemu.qmp.legacy.QEMUMonitorProtocol method)

 	start_server() (qemu.qmp.protocol.AsyncProtocol method)

 	start_server_and_accept() (qemu.qmp.protocol.AsyncProtocol method)

 	StateError

U

 	
 	UnexpectedTypeError

 	
 	upper_half() (in module qemu.qmp.util)

V

 	
 	value (qemu.qmp.message.UnexpectedTypeError attribute)

 	
 	version (qemu.qmp.models.QMPGreeting attribute)

W

 	
 	wait_closed() (in module qemu.qmp.util)

 nav.xhtml

 Table of Contents

 		
 qemu.qmp: QEMU Monitor Protocol Library

 		
 Overview

 		
 Classes

 		
 QMPClient

 		
 Message

 		
 EventListener

 		
 Runstate

 		
 Exceptions

 		
 Error classes

 		
 Events

 		
 EventListener Tutorial

 		
 listener() context blocks with one name

 		
 listener() context blocks with two or more names

 		
 listener() context blocks with no names

 		
 Using async iterators to retrieve events

 		
 Using asyncio.Task to concurrently retrieve events

 		
 Using register_listener() and remove_listener()

 		
 Using the built-in all events listener

 		
 Using both .get() and async iterators

 		
 Creating multiple listeners

 		
 Clearing listeners

 		
 Accessing listener history

 		
 Using event filters

 		
 Activating an existing listener with listen()

 		
 Activating multiple existing listeners with listen()

 		
 Extending the EventListener class

 		
 Experimental Interfaces & Design Issues

 		
 qmp.listen()’s type signature

 		
 API Reference

 		
 Legacy API

 		
 QMP Messages

 		
 QMP Data Models

 		
 Asyncio Protocol

 		
 QMP Protocol

 		
 Utilities

_static/plus.png

_static/file.png

_static/minus.png

