
QEMU Monitor Protocol Library
Release unknown version

John Snow

Aug 03, 2022

HOME

1 Who is this library for? 3

2 Who isn’t this library for? 5

3 Installing 7

4 Usage 9

5 Contributing 11
5.1 Developing . 11

6 Stability and Versioning 13

7 Changelog 15
7.1 0.0.1 (2022-07-20) . 15

8 qemu.qmp: QEMU Monitor Protocol Library 17
8.1 Who is this library for? . 17
8.2 Who isn’t this library for? . 17
8.3 Installing . 18
8.4 Usage . 18
8.5 Contributing . 18

8.5.1 Developing . 19
8.6 Stability and Versioning . 19
8.7 Changelog . 19

8.7.1 0.0.1 (2022-07-20) . 19

9 Indices and tables 59

Python Module Index 61

Index 63

i

ii

QEMU Monitor Protocol Library, Release unknown version

Welcome! qemu.qmp is a QEMU Monitor Protocol (“QMP”) library written in Python, using asyncio. It is used to
send QMP messages to running QEMU emulators. It requires Python 3.6+ and has no mandatory dependencies.

This library can be used to communicate with QEMU emulators, the QEMU Guest Agent (QGA), the QEMU Storage
Daemon (QSD), or any other utility or application that speaks QMP.

This library makes as few assumptions as possible about the actual version or what type of endpoint it will be commu-
nicating with; i.e. this library does not contain command definitions and does not seek to be an SDK or a replacement
for tools like libvirt or virsh. It is “simply” the protocol (QMP) and not the vocabulary (QAPI). It is up to the library
user (you!) to know which commands and arguments you want to send.

HOME 1

https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-intro.txt
https://docs.python.org/3/library/asyncio.html
https://www.qemu.org/
https://qemu.readthedocs.io/en/latest/interop/qemu-ga.html
https://qemu.readthedocs.io/en/latest/tools/qemu-storage-daemon.html
https://qemu.readthedocs.io/en/latest/tools/qemu-storage-daemon.html
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-intro.txt
https://libvirt.org/
https://libvirt.org/manpages/virsh.html
https://www.qemu.org/docs/master/devel/qapi-code-gen.html

QEMU Monitor Protocol Library, Release unknown version

2 HOME

CHAPTER

ONE

WHO IS THIS LIBRARY FOR?

It is firstly for developers of QEMU themselves; as the test infrastructure of QEMU itself needs a convenient and
scriptable interface for testing QEMU. This library was split out of the QEMU source tree in order to share a reference
version of a QMP library that was usable both within and outside of the QEMU source tree.

Second, it’s for those who are developing for QEMU by adding new architectures, devices, or functionality; as well
as targeting those who are developing with QEMU, i.e. developers working on integrating QEMU features into other
projects such as libvirt, KubeVirt, Kata Containers, etc. Occasionally, using existing virtual-machine (VM) manage-
ment stacks that integrate QEMU+KVM can make developing, testing, and debugging features difficult. In these cases,
having more ‘raw’ access to QEMU is beneficial. This library is for you.

Lastly, it’s for power users who already use QEMU directly without the aid of libvirt because they require the raw
control and power this affords them.

3

QEMU Monitor Protocol Library, Release unknown version

4 Chapter 1. Who is this library for?

CHAPTER

TWO

WHO ISN’T THIS LIBRARY FOR?

It is not designed for anyone looking for a turn-key solution for VM management. QEMU is a low-level component
that resembles a particularly impressive Swiss Army knife. This library does not manage that complexity and is largely
“VM-ignorant”. It’s not a replacement for projects like libvirt, virt-manager, GNOME Boxes, etc.

5

https://libvirt.org/
https://virt-manager.org/
https://wiki.gnome.org/Apps/Boxes

QEMU Monitor Protocol Library, Release unknown version

6 Chapter 2. Who isn’t this library for?

CHAPTER

THREE

INSTALLING

This package can be installed from PyPI with pip:

> pip3 install qemu.qmp

7

QEMU Monitor Protocol Library, Release unknown version

8 Chapter 3. Installing

CHAPTER

FOUR

USAGE

Launch QEMU with a monitor, e.g.:

> qemu-system-x86_64 -qmp unix:qmp.sock,server=on,wait=off

Then, at its simplest, script-style usage looks like this:

import asyncio
from qemu.qmp import QMPClient

async def main():
qmp = QMPClient('my-vm-nickname')
await qmp.connect('qmp.sock')

res = await qmp.execute('query-status')
print(f"VM status: {res['status']}")

await qmp.disconnect()

asyncio.run(main())

The above script will connect to the UNIX socket located at qmp.sock, query the VM’s runstate, then print it out to
the terminal:

> python3 example.py
VM status: running

For more complex usages, especially those that make full advantage of monitoring asynchronous events, refer to the
online documentation or type import qemu.qmp; help(qemu.qmp) in your Python terminal of choice.

9

https://qemu-project.gitlab.io/python-qemu-qmp/

QEMU Monitor Protocol Library, Release unknown version

10 Chapter 4. Usage

CHAPTER

FIVE

CONTRIBUTING

Contributions are quite welcome! Please file bugs using the GitLab issue tracker. This project will accept GitLab
merge requests, but due to the close association with the QEMU project, there are some additional guidelines:

1. Please use the “Signed-off-by” tag in your commit messages. See https://wiki.linuxfoundation.org/dco for more
information on this requirement.

2. This repository won’t squash merge requests into a single commit on pull; each commit should seek to be self-
contained (within reason).

3. Owing to the above, each commit sent as part of a merge request should not introduce any temporary regressions,
even if fixed later in the same merge request. This is done to preserve bisectability.

4. Please associate every merge request with at least one GitLab issue. This helps with generating Changelog text
and staying organized. Thank you

5.1 Developing

Optional packages necessary for running code quality analysis for this package can be installed with the optional de-
pendency group “devel”: pip install qemu.qmp[devel].

make develop can be used to install this package in editable mode (to the current environment) and bring in testing
dependencies in one command.

make check can be used to run the available tests. Consult make help for other targets and tests that make sense for
different occasions.

Before submitting a pull request, consider running make check-tox && make check-pipenv locally to spot any
issues that will cause the CI to fail. These checks use their own virtual environments and won’t pollute your working
space.

11

https://gitlab.com/qemu-project/python-qemu-qmp/-/issues
https://wiki.linuxfoundation.org/dco
https://gitlab.com/qemu-project/python-qemu-qmp/-/issues
https://docs.python.org/3/tutorial/venv.html

QEMU Monitor Protocol Library, Release unknown version

12 Chapter 5. Contributing

CHAPTER

SIX

STABILITY AND VERSIONING

This package uses a major.minor.micro SemVer versioning, with the following additional semantics during the al-
pha/beta period (Major version 0):

This package treats 0.0.z versions as “alpha” versions. Each micro version update may change the API incompatibly.
Early users are advised to pin against explicit versions, but check for updates often.

A planned 0.1.z version will introduce the first “beta”, whereafter each micro update will be backwards compatible,
but each minor update will not be. The first beta version will be released after legacy.py is removed, and the API is
tentatively “stable”.

Thereafter, normal SemVer / PEP440 rules will apply; micro updates will always be bugfixes, and minor updates will
be reserved for backwards compatible feature changes.

13

https://semver.org/
https://semver.org/
https://peps.python.org/pep-0440/

QEMU Monitor Protocol Library, Release unknown version

14 Chapter 6. Stability and Versioning

CHAPTER

SEVEN

CHANGELOG

7.1 0.0.1 (2022-07-20)

• Initial public release. (API is still subject to change!)

15

QEMU Monitor Protocol Library, Release unknown version

16 Chapter 7. Changelog

CHAPTER

EIGHT

QEMU.QMP: QEMU MONITOR PROTOCOL LIBRARY

Welcome! qemu.qmp is a QEMU Monitor Protocol (“QMP”) library written in Python, using asyncio. It is used to
send QMP messages to running QEMU emulators. It requires Python 3.6+ and has no mandatory dependencies.

This library can be used to communicate with QEMU emulators, the QEMU Guest Agent (QGA), the QEMU Storage
Daemon (QSD), or any other utility or application that speaks QMP.

This library makes as few assumptions as possible about the actual version or what type of endpoint it will be commu-
nicating with; i.e. this library does not contain command definitions and does not seek to be an SDK or a replacement
for tools like libvirt or virsh. It is “simply” the protocol (QMP) and not the vocabulary (QAPI). It is up to the library
user (you!) to know which commands and arguments you want to send.

8.1 Who is this library for?

It is firstly for developers of QEMU themselves; as the test infrastructure of QEMU itself needs a convenient and
scriptable interface for testing QEMU. This library was split out of the QEMU source tree in order to share a reference
version of a QMP library that was usable both within and outside of the QEMU source tree.

Second, it’s for those who are developing for QEMU by adding new architectures, devices, or functionality; as well
as targeting those who are developing with QEMU, i.e. developers working on integrating QEMU features into other
projects such as libvirt, KubeVirt, Kata Containers, etc. Occasionally, using existing virtual-machine (VM) manage-
ment stacks that integrate QEMU+KVM can make developing, testing, and debugging features difficult. In these cases,
having more ‘raw’ access to QEMU is beneficial. This library is for you.

Lastly, it’s for power users who already use QEMU directly without the aid of libvirt because they require the raw
control and power this affords them.

8.2 Who isn’t this library for?

It is not designed for anyone looking for a turn-key solution for VM management. QEMU is a low-level component
that resembles a particularly impressive Swiss Army knife. This library does not manage that complexity and is largely
“VM-ignorant”. It’s not a replacement for projects like libvirt, virt-manager, GNOME Boxes, etc.

17

https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-intro.txt
https://docs.python.org/3/library/asyncio.html
https://www.qemu.org/
https://qemu.readthedocs.io/en/latest/interop/qemu-ga.html
https://qemu.readthedocs.io/en/latest/tools/qemu-storage-daemon.html
https://qemu.readthedocs.io/en/latest/tools/qemu-storage-daemon.html
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-intro.txt
https://libvirt.org/
https://libvirt.org/manpages/virsh.html
https://www.qemu.org/docs/master/devel/qapi-code-gen.html
https://libvirt.org/
https://virt-manager.org/
https://wiki.gnome.org/Apps/Boxes

QEMU Monitor Protocol Library, Release unknown version

8.3 Installing

This package can be installed from PyPI with pip:

> pip3 install qemu.qmp

8.4 Usage

Launch QEMU with a monitor, e.g.:

> qemu-system-x86_64 -qmp unix:qmp.sock,server=on,wait=off

Then, at its simplest, script-style usage looks like this:

import asyncio
from qemu.qmp import QMPClient

async def main():
qmp = QMPClient('my-vm-nickname')
await qmp.connect('qmp.sock')

res = await qmp.execute('query-status')
print(f"VM status: {res['status']}")

await qmp.disconnect()

asyncio.run(main())

The above script will connect to the UNIX socket located at qmp.sock, query the VM’s runstate, then print it out to
the terminal:

> python3 example.py
VM status: running

For more complex usages, especially those that make full advantage of monitoring asynchronous events, refer to the
online documentation or type import qemu.qmp; help(qemu.qmp) in your Python terminal of choice.

8.5 Contributing

Contributions are quite welcome! Please file bugs using the GitLab issue tracker. This project will accept GitLab
merge requests, but due to the close association with the QEMU project, there are some additional guidelines:

1. Please use the “Signed-off-by” tag in your commit messages. See https://wiki.linuxfoundation.org/dco for more
information on this requirement.

2. This repository won’t squash merge requests into a single commit on pull; each commit should seek to be self-
contained (within reason).

3. Owing to the above, each commit sent as part of a merge request should not introduce any temporary regressions,
even if fixed later in the same merge request. This is done to preserve bisectability.

18 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://qemu-project.gitlab.io/python-qemu-qmp/
https://gitlab.com/qemu-project/python-qemu-qmp/-/issues
https://wiki.linuxfoundation.org/dco

QEMU Monitor Protocol Library, Release unknown version

4. Please associate every merge request with at least one GitLab issue. This helps with generating Changelog text
and staying organized. Thank you

8.5.1 Developing

Optional packages necessary for running code quality analysis for this package can be installed with the optional de-
pendency group “devel”: pip install qemu.qmp[devel].

make develop can be used to install this package in editable mode (to the current environment) and bring in testing
dependencies in one command.

make check can be used to run the available tests. Consult make help for other targets and tests that make sense for
different occasions.

Before submitting a pull request, consider running make check-tox && make check-pipenv locally to spot any
issues that will cause the CI to fail. These checks use their own virtual environments and won’t pollute your working
space.

8.6 Stability and Versioning

This package uses a major.minor.micro SemVer versioning, with the following additional semantics during the al-
pha/beta period (Major version 0):

This package treats 0.0.z versions as “alpha” versions. Each micro version update may change the API incompatibly.
Early users are advised to pin against explicit versions, but check for updates often.

A planned 0.1.z version will introduce the first “beta”, whereafter each micro update will be backwards compatible,
but each minor update will not be. The first beta version will be released after legacy.py is removed, and the API is
tentatively “stable”.

Thereafter, normal SemVer / PEP440 rules will apply; micro updates will always be bugfixes, and minor updates will
be reserved for backwards compatible feature changes.

8.7 Changelog

8.7.1 0.0.1 (2022-07-20)

• Initial public release. (API is still subject to change!)

Overview

QEMU Monitor Protocol (QMP) development library & tooling.

This package provides a fairly low-level class for communicating asynchronously with QMP protocol servers, as im-
plemented by QEMU, the QEMU Guest Agent, and the QEMU Storage Daemon.

QMPClient provides the main functionality of this package. All errors raised by this library derive from QMPError,
see qmp.error for additional detail. See qmp.events for an in-depth tutorial on managing QMP events.

8.6. Stability and Versioning 19

https://gitlab.com/qemu-project/python-qemu-qmp/-/issues
https://docs.python.org/3/tutorial/venv.html
https://semver.org/
https://semver.org/
https://peps.python.org/pep-0440/

QEMU Monitor Protocol Library, Release unknown version

Classes

QMPClient

class qemu.qmp.QMPClient(name: Optional[str] = None)
Bases: AsyncProtocol[Message], Events

Implements a QMP client connection.

QMPClient can be used to either connect or listen to a QMP server, but always acts as the QMP client.

Parameters
name – Optional nickname for the connection, used to differentiate instances when logging.

Basic script-style usage looks like this:

import asyncio
from qemu.qmp import QMPClient

async def main():
qmp = QMPClient('my_virtual_machine_name')
await qmp.connect(('127.0.0.1', 1234))
...
res = await qmp.execute('query-block')
...
await qmp.disconnect()

asyncio.run(main())

A more advanced example that starts to take advantage of asyncio might look like this:

class Client:
def __init__(self, name: str):

self.qmp = QMPClient(name)

async def watch_events(self):
try:

async for event in self.qmp.events:
print(f"Event: {event['event']}")

except asyncio.CancelledError:
return

async def run(self, address='/tmp/qemu.socket'):
await self.qmp.connect(address)
asyncio.create_task(self.watch_events())
await self.qmp.runstate_changed.wait()
await self.disconnect()

See qmp.events for more detail on event handling patterns.

logger: logging.Logger = <Logger qemu.qmp.qmp_client (WARNING)>

Logger object used for debugging messages.

await_greeting: bool

Whether or not to await a greeting after establishing a connection. Defaults to True; QGA servers expect
this to be False.

20 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool

QEMU Monitor Protocol Library, Release unknown version

negotiate: bool

Whether or not to perform capabilities negotiation upon connection. Implies await_greeting. Defaults
to True; QGA servers expect this to be False.

property greeting: Optional[Greeting]

The Greeting from the QMP server, if any.

Defaults to None, and will be set after a greeting is received during the connection process. It is reset at the
start of each connection attempt.

async execute_msg(msg: Message)→ object
Execute a QMP command on the server and return its value.

Parameters
msg – The QMP Message to execute.

Returns
The command execution return value from the server. The type of object returned depends
on the command that was issued, though most in QEMU return a dict.

Raises

• ValueError – If the QMP Message does not have either the ‘execute’ or ‘exec-oob’ fields
set.

• ExecuteError – When the server returns an error response.

• ExecInterruptedError – If the connection was disrupted before receiving a reply from
the server.

classmethod make_execute_msg(cmd: str, arguments: Optional[Mapping[str, object]] = None, oob: bool
= False)→ Message

Create an executable message to be sent by execute_msg later.

Parameters

• cmd – QMP command name.

• arguments – Arguments (if any). Must be JSON-serializable.

• oob – If True, execute “out of band”.

Returns
A QMP Message that can be executed with execute_msg().

async execute(cmd: str, arguments: Optional[Mapping[str, object]] = None, oob: bool = False)→ object
Execute a QMP command on the server and return its value.

Parameters

• cmd – QMP command name.

• arguments – Arguments (if any). Must be JSON-serializable.

• oob – If True, execute “out of band”.

Returns
The command execution return value from the server. The type of object returned depends
on the command that was issued, though most in QEMU return a dict.

Raises

• ExecuteError – When the server returns an error response.

8.7. Changelog 21

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L116
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#True
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L116
https://docs.python.org/3/library/stdtypes.html#dict

QEMU Monitor Protocol Library, Release unknown version

• ExecInterruptedError – If the connection was disrupted before receiving a reply from
the server.

send_fd_scm(fd: int)→ None
Send a file descriptor to the remote via SCM_RIGHTS.

This method does not close the file descriptor.

Parameters
fd – The file descriptor to send to QEMU.

This is an advanced feature of QEMU where file descriptors can be passed from client to server. This is
usually used as a security measure to isolate the QEMU process from being able to open its own files. See
the QMP commands getfd and add-fd for more information.

See socket.socket.sendmsg for more information on the Python implementation for sending file de-
scriptors over a UNIX socket.

async accept()→ None
Accept an incoming connection and begin processing message queues.

Used after a previous call to start_server() to accept an incoming connection. If this call fails,
runstate is guaranteed to be set back to IDLE.

Raises

• StateError – When the Runstate is not CONNECTING .

• QMPError – When start_server() was not called first.

• ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases, the wrapped exception will be
OSError or EOFError. If a protocol-level failure occurs while establishing a new session,
the wrapped error may also be an QMPError.

async connect(address: Union[str, Tuple[str, int]], ssl: Optional[SSLContext] = None)→ None
Connect to the server and begin processing message queues.

If this call fails, runstate is guaranteed to be set back to IDLE.

Parameters

• address – Address to connect to; UNIX socket path or TCP address/port.

• ssl – SSL context to use, if any.

Raises

• StateError – When the Runstate is not IDLE.

• ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases, the wrapped exception will be
OSError or EOFError. If a protocol-level failure occurs while establishing a new session,
the wrapped error may also be an QMPError.

async disconnect()→ None
Disconnect and wait for all tasks to fully stop.

If there was an exception that caused the reader/writers to terminate prematurely, it will be raised here.

Raises
Exception – When the reader or writer terminate unexpectedly. You can expect to see

22 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/socket.html#socket.socket.sendmsg
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception

QEMU Monitor Protocol Library, Release unknown version

EOFError if the server hangs up, or OSError for connection-related issues. If there was
a QMP protocol-level problem, ProtocolError will be seen.

listen(*listeners: EventListener)→ Iterator[None]
Context manager: Temporarily listen with an EventListener.

Accepts one or more EventListener objects and registers them, activating them for the duration of the
context block.

EventListener objects will have any pending events in their FIFO queue cleared upon exiting the context
block, when they are deactivated.

Parameters
*listeners – One or more EventListeners to activate.

Raises
ListenerError – If the given listener(s) are already active.

listener(names: Optional[Union[str, Iterable[str]]] = (), event_filter: Optional[Callable[[Message], bool]]
= None)→ Iterator[EventListener]

Context manager: Temporarily listen with a new EventListener.

Creates an EventListener object and registers it, activating it for the duration of the context block.

Parameters

• names – One or more names of events to listen for. When not provided, listen for ALL
events.

• event_filter – An optional event filtering function. When names are also provided, this
acts as a secondary filter.

Returns
The newly created and active EventListener.

register_listener(listener: EventListener)→ None
Register and activate an EventListener.

Parameters
listener – The listener to activate.

Raises
ListenerError – If the given listener is already registered.

remove_listener(listener: EventListener)→ None
Unregister and deactivate an EventListener.

The removed listener will have its pending events cleared via clear(). The listener can be re-registered
later when desired.

Parameters
listener – The listener to deactivate.

Raises
ListenerError – If the given listener is not registered.

property runstate: Runstate

The current Runstate of the connection.

async runstate_changed()→ Runstate
Wait for the runstate to change, then return that Runstate.

8.7. Changelog 23

https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

QEMU Monitor Protocol Library, Release unknown version

async start_server(address: Union[str, Tuple[str, int]], ssl: Optional[SSLContext] = None)→ None
Start listening for an incoming connection, but do not wait for a peer.

This method starts listening for an incoming connection, but does not block waiting for a peer. This call
will return immediately after binding and listening on a socket. A later call to accept() must be made in
order to finalize the incoming connection.

Parameters

• address – Address to listen on; UNIX socket path or TCP address/port.

• ssl – SSL context to use, if any.

Raises

• StateError – When the Runstate is not IDLE.

• ConnectError – When the server could not start listening on this address.

This exception will wrap a more concrete one. In most cases, the wrapped exception will
be OSError.

async start_server_and_accept(address: Union[str, Tuple[str, int]], ssl: Optional[SSLContext] =
None)→ None

Accept a connection and begin processing message queues.

If this call fails, runstate is guaranteed to be set back to IDLE. This method is precisely equivalent to
calling start_server() followed by accept().

Parameters

• address – Address to listen on; UNIX socket path or TCP address/port.

• ssl – SSL context to use, if any.

Raises

• StateError – When the Runstate is not IDLE.

• ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases, the wrapped exception will be
OSError or EOFError. If a protocol-level failure occurs while establishing a new session,
the wrapped error may also be a QMPError.

name: Optional[str]

The nickname for this connection, if any. This name is used for differentiating instances in debug output.

events: EventListener

Default, all-events EventListener. See qmp.events for more info.

Message

class qemu.qmp.Message(value: Union[bytes, Mapping[str, object]] = b'{}', *, eager: bool = True)
Bases: MutableMapping[str, object]

Represents a single QMP protocol message.

QMP uses JSON objects as its basic communicative unit; so this Python object is a MutableMapping. It may
be instantiated from either another mapping (like a dict), or from raw bytes that still need to be deserialized.

Once instantiated, it may be treated like any other MutableMapping:

24 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

QEMU Monitor Protocol Library, Release unknown version

>>> msg = Message(b'{"hello": "world"}')
>>> assert msg['hello'] == 'world'
>>> msg['id'] = 'foobar'
>>> print(msg)
{
"hello": "world",
"id": "foobar"

}

It can be converted to bytes:

>>> msg = Message({"hello": "world"})
>>> print(bytes(msg))
b'{"hello":"world","id":"foobar"}'

Or back into a garden-variety dict:

>>> dict(msg)
{'hello': 'world'}

Or pretty-printed:

>>> print(str(msg))
{
"hello": "world"

}

Parameters

• value – Initial value, if any.

• eager – When True, attempt to serialize or deserialize the initial value immediately, so that
conversion exceptions are raised during the call to __init__().

EventListener

class qemu.qmp.EventListener(names: Optional[Union[str, Iterable[str]]] = None, event_filter:
Optional[Callable[[Message], bool]] = None)

Selectively listens for events with runtime configurable filtering.

This class is designed to be directly usable for the most common cases, but it can be extended to provide more
rigorous control.

Parameters

• names – One or more names of events to listen for. When not provided, listen for ALL events.

• event_filter – An optional event filtering function. When names are also provided, this
acts as a secondary filter.

When names and event_filter are both provided, the names will be filtered first, and then the filter function
will be called second. The event filter function can assume that the format of the event is a known format.

names: Set[str]

Primary event filter, based on one or more event names.

8.7. Changelog 25

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str

QEMU Monitor Protocol Library, Release unknown version

event_filter: Optional[Callable[[Message], bool]]

Optional, secondary event filter.

property history: Tuple[Message, ...]

A read-only history of all events seen so far.

This represents every event, including those not yet witnessed via get() or async for. It persists between
clear() calls and is immutable.

accept(event: Message)→ bool
Determine if this listener accepts this event.

This method determines which events will appear in the stream. The default implementation simply checks
the event against the list of names and the event_filter to decide if this EventListener accepts a given
event. It can be overridden/extended to provide custom listener behavior.

User code is not expected to need to invoke this method.

Parameters
event – The event under consideration.

Returns
True, if this listener accepts this event.

async put(event: Message)→ None
Conditionally put a new event into the FIFO queue.

This method is not designed to be invoked from user code, and it should not need to be overridden. It is
a public interface so that QMPClient has an interface by which it can inform registered listeners of new
events.

The event will be put into the queue if accept() returns True.

Parameters
event – The new event to put into the FIFO queue.

async get()→ Message
Wait for the very next event in this stream.

If one is already available, return that one.

empty()→ bool
Return True if there are no pending events.

clear()→ List[Message]
Clear this listener of all pending events.

Called when an EventListener is being unregistered, this clears the pending FIFO queue synchronously.
It can be also be used to manually clear any pending events, if desired.

Returns
The cleared events, if any.

Warning: Take care when discarding events. Cleared events will be silently tossed on the floor. All
events that were ever accepted by this listener are visible in history().

26 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/typing.html#typing.List

QEMU Monitor Protocol Library, Release unknown version

Runstate

class qemu.qmp.Runstate(value)
Bases: Enum

Protocol session runstate.

IDLE = 0

Fully quiesced and disconnected.

CONNECTING = 1

In the process of connecting or establishing a session.

RUNNING = 2

Fully connected and active session.

DISCONNECTING = 3

In the process of disconnecting. Runstate may be returned to IDLE by calling disconnect().

Exceptions

exception qemu.qmp.QMPError

Bases: Exception

Abstract error class for all errors originating from this package.

exception qemu.qmp.StateError(error_message: str, state: Runstate, required: Runstate)
Bases: QMPError

An API command (connect, execute, etc) was issued at an inappropriate time.

This error is raised when a command like connect() is called when the client is already connected.

Parameters

• error_message – Human-readable string describing the state violation.

• state – The actual Runstate seen at the time of the violation.

• required – The Runstate required to process this command.

exception qemu.qmp.ConnectError(error_message: str, exc: Exception)
Bases: QMPError

Raised when the initial connection process has failed.

This Exception always wraps a “root cause” exception that can be interrogated for additional information.

For example, when connecting to a non-existent socket:

await qmp.connect('not_found.sock')
ConnectError: Failed to establish connection:
[Errno 2] No such file or directory

Parameters

• error_message – Human-readable string describing the error.

• exc – The root-cause exception.

8.7. Changelog 27

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

QEMU Monitor Protocol Library, Release unknown version

error_message: str

Human-readable error string

exc: Exception

Wrapped root cause exception

exception qemu.qmp.ExecuteError(error_response: ErrorResponse, sent: Message, received: Message)
Bases: QMPError

Exception raised by QMPClient.execute() on RPC failure.

This exception is raised when the server received, interpreted, and replied to a command successfully; but the
command itself returned a failure status.

For example:

await qmp.execute('block-dirty-bitmap-add',
{'node': 'foo', 'name': 'my_bitmap'})

qemu.qmp.qmp_client.ExecuteError:
Cannot find device='foo' nor node-name='foo'

Parameters

• error_response – The RPC error response object.

• sent – The sent RPC message that caused the failure.

• received – The raw RPC error reply received.

sent: Message

The sent Message that caused the failure

received: Message

The received Message that indicated failure

error: ErrorResponse

The parsed error response

error_class: str

The QMP error class

exception qemu.qmp.ExecInterruptedError

Bases: QMPError

Exception raised by execute() (et al) when an RPC is interrupted.

This error is raised when an execute() statement could not be completed. This can occur because the connec-
tion itself was terminated before a reply was received. The true cause of the interruption will be available via
disconnect().

The QMP protocol does not make it possible to know if a command succeeded or failed after such an event; the
client will need to query the server to determine the state of the server on a case-by-case basis.

For example, ECONNRESET might look like this:

try:
await qmp.execute('query-block')
ExecInterruptedError: Disconnected

except ExecInterruptedError:
(continues on next page)

28 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

QEMU Monitor Protocol Library, Release unknown version

(continued from previous page)

await qmp.disconnect()
ConnectionResetError: [Errno 104] Connection reset by peer

Error classes

QMP Error Classes

This package seeks to provide semantic error classes that are intended to be used directly by clients when they would like
to handle particular semantic failures (e.g. “failed to connect”) without needing to know the enumeration of possible
reasons for that failure.

QMPError serves as the ancestor for all exceptions raised by this package, and is suitable for use in handling semantic
errors from this library. In most cases, individual public methods will attempt to catch and re-encapsulate various
exceptions to provide a semantic error-handling interface.

QMP Exception Hierarchy Reference

Exception

+– QMPError
+– ConnectError
+– StateError
+– ExecInterruptedError
+– ExecuteError
+– ListenerError
+– ProtocolError

+– DeserializationError
+– UnexpectedTypeError
+– ServerParseError
+– BadReplyError
+– GreetingError
+– NegotiationError

exception qemu.qmp.error.QMPError

Bases: Exception

Abstract error class for all errors originating from this package.

exception qemu.qmp.error.ProtocolError(error_message: str)
Bases: QMPError

Abstract error class for protocol failures.

Semantically, these errors are generally the fault of either the protocol server or as a result of a bug in this library.

Parameters
error_message – Human-readable string describing the error.

error_message: str

Human-readable error message, without any prefix.

8.7. Changelog 29

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

QEMU Monitor Protocol Library, Release unknown version

Events

QMP Events and EventListeners

Asynchronous QMP uses EventListener objects to listen for events. An EventListener is a FIFO event queue that
can be pre-filtered to listen for only specific events. Each EventListener instance receives its own copy of events
that it hears, so events may be consumed without fear or worry for depriving other listeners of events they need to hear.

EventListener Tutorial

In all of the following examples, we assume that we have a QMPClient instantiated named qmp that is already connected.
For example:

from qemu.qmp import QMPClient

qmp = QMPClient('example-vm')
await qmp.connect('127.0.0.1', 1234)

listener() context blocks with one name

The most basic usage is by using the listener() context manager to construct them:

with qmp.listener('STOP') as listener:
await qmp.execute('stop')
await listener.get()

The listener is active only for the duration of the ‘with’ block. This instance listens only for ‘STOP’ events.

listener() context blocks with two or more names

Multiple events can be selected for by providing any Iterable[str]:

with qmp.listener(('STOP', 'RESUME')) as listener:
await qmp.execute('stop')
event = await listener.get()
assert event['event'] == 'STOP'

await qmp.execute('cont')
event = await listener.get()
assert event['event'] == 'RESUME'

30 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

QEMU Monitor Protocol Library, Release unknown version

listener() context blocks with no names

By omitting names entirely, you can listen to ALL events.

with qmp.listener() as listener:
await qmp.execute('stop')
event = await listener.get()
assert event['event'] == 'STOP'

This isn’t a very good use case for this feature: In a non-trivial running system, we may not know what event will arrive
next. Grabbing the top of a FIFO queue returning multiple kinds of events may be prone to error.

Using async iterators to retrieve events

If you’d like to simply watch what events happen to arrive, you can use the listener as an async iterator:

with qmp.listener() as listener:
async for event in listener:

print(f"Event arrived: {event['event']}")

This is analogous to the following code:

with qmp.listener() as listener:
while True:

event = listener.get()
print(f"Event arrived: {event['event']}")

This event stream will never end, so these blocks will never terminate. Even if the QMP connection errors out prema-
turely, this listener will go silent without raising an error.

Using asyncio.Task to concurrently retrieve events

Since a listener’s event stream will never terminate, it is not likely useful to use that form in a script. For longer-running
clients, we can create event handlers by using asyncio.Task to create concurrent coroutines:

async def print_events(listener):
try:

async for event in listener:
print(f"Event arrived: {event['event']}")

except asyncio.CancelledError:
return

with qmp.listener() as listener:
task = asyncio.Task(print_events(listener))
await qmp.execute('stop')
await qmp.execute('cont')
task.cancel()
await task

However, there is no guarantee that these events will be received by the time we leave this context block. Once the
context block is exited, the listener will cease to hear any new events, and becomes inert.

8.7. Changelog 31

https://docs.python.org/3/library/asyncio-task.html#asyncio.Task

QEMU Monitor Protocol Library, Release unknown version

Be mindful of the timing: the above example will probably– but does not guarantee– that both STOP/RESUMED
events will be printed. The example below outlines how to use listeners outside of a context block.

Using register_listener() and remove_listener()

To create a listener with a longer lifetime, beyond the scope of a single block, create a listener and then call
register_listener():

class MyClient:
def __init__(self, qmp):

self.qmp = qmp
self.listener = EventListener()

async def print_events(self):
try:

async for event in self.listener:
print(f"Event arrived: {event['event']}")

except asyncio.CancelledError:
return

async def run(self):
self.task = asyncio.Task(self.print_events)
self.qmp.register_listener(self.listener)
await qmp.execute('stop')
await qmp.execute('cont')

async def stop(self):
self.task.cancel()
await self.task
self.qmp.remove_listener(self.listener)

The listener can be deactivated by using remove_listener(). When it is removed, any possible pending events are
cleared and it can be re-registered at a later time.

Using the built-in all events listener

The QMPClient object creates its own default listener named events that can be used for the same purpose without
having to create your own:

async def print_events(listener):
try:

async for event in listener:
print(f"Event arrived: {event['event']}")

except asyncio.CancelledError:
return

task = asyncio.Task(print_events(qmp.events))

await qmp.execute('stop')
await qmp.execute('cont')

(continues on next page)

32 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

QEMU Monitor Protocol Library, Release unknown version

(continued from previous page)

task.cancel()
await task

Using both .get() and async iterators

The async iterator and get() methods pull events from the same FIFO queue. If you mix the usage of both, be aware:
Events are emitted precisely once per listener.

If multiple contexts try to pull events from the same listener instance, events are still emitted only precisely once.

This restriction can be lifted by creating additional listeners.

Creating multiple listeners

Additional EventListener objects can be created at-will. Each one receives its own copy of events, with separate
FIFO event queues.

my_listener = EventListener()
qmp.register_listener(my_listener)

await qmp.execute('stop')
copy1 = await my_listener.get()
copy2 = await qmp.events.get()

assert copy1 == copy2

In this example, we await an event from both a user-created EventListener and the built-in events listener. Both
receive the same event.

Clearing listeners

EventListener objects can be cleared, clearing all events seen thus far:

await qmp.execute('stop')
discarded = qmp.events.clear()
await qmp.execute('cont')
event = await qmp.events.get()
assert event['event'] == 'RESUME'
assert discarded[0]['event'] == 'STOP'

EventListener objects are FIFO queues. If events are not consumed, they will remain in the queue until they are
witnessed or discarded via clear(). FIFO queues will be drained automatically upon leaving a context block, or when
calling remove_listener().

Any events removed from the queue in this fashion will be returned by the clear call.

8.7. Changelog 33

QEMU Monitor Protocol Library, Release unknown version

Accessing listener history

EventListener objects record their history. Even after being cleared, you can obtain a record of all events seen so
far:

await qmp.execute('stop')
await qmp.execute('cont')
qmp.events.clear()

assert len(qmp.events.history) == 2
assert qmp.events.history[0]['event'] == 'STOP'
assert qmp.events.history[1]['event'] == 'RESUME'

The history is updated immediately and does not require the event to be witnessed first.

Using event filters

EventListener objects can be given complex filtering criteria if names are not sufficient:

def job1_filter(event) -> bool:
event_data = event.get('data', {})
event_job_id = event_data.get('id')
return event_job_id == "job1"

with qmp.listener('JOB_STATUS_CHANGE', job1_filter) as listener:
await qmp.execute('blockdev-backup', arguments={'job-id': 'job1', ...})
async for event in listener:

if event['data']['status'] == 'concluded':
break

These filters might be most useful when parameterized. EventListener objects expect a function that takes only a
single argument (the raw event, as a Message) and returns a bool; True if the event should be accepted into the stream.
You can create a function that adapts this signature to accept configuration parameters:

def job_filter(job_id: str) -> EventFilter:
def filter(event: Message) -> bool:

return event['data']['id'] == job_id
return filter

with qmp.listener('JOB_STATUS_CHANGE', job_filter('job2')) as listener:
await qmp.execute('blockdev-backup', arguments={'job-id': 'job2', ...})
async for event in listener:

if event['data']['status'] == 'concluded':
break

34 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

QEMU Monitor Protocol Library, Release unknown version

Activating an existing listener with listen()

Listeners with complex, long configurations can also be created manually and activated temporarily by using listen()
instead of listener():

listener = EventListener(('BLOCK_JOB_COMPLETED', 'BLOCK_JOB_CANCELLED',
'BLOCK_JOB_ERROR', 'BLOCK_JOB_READY',
'BLOCK_JOB_PENDING', 'JOB_STATUS_CHANGE'))

with qmp.listen(listener):
await qmp.execute('blockdev-backup', arguments={'job-id': 'job3', ...})
async for event in listener:

print(event)
if event['event'] == 'BLOCK_JOB_COMPLETED':

break

Any events that are not witnessed by the time the block is left will be cleared from the queue; entering the block is an
implicit register_listener() and leaving the block is an implicit remove_listener().

Activating multiple existing listeners with listen()

While listener() is only capable of creating a single listener, listen() is capable of activating multiple listeners
simultaneously:

def job_filter(job_id: str) -> EventFilter:
def filter(event: Message) -> bool:

return event['data']['id'] == job_id
return filter

jobA = EventListener('JOB_STATUS_CHANGE', job_filter('jobA'))
jobB = EventListener('JOB_STATUS_CHANGE', job_filter('jobB'))

with qmp.listen(jobA, jobB):
qmp.execute('blockdev-create', arguments={'job-id': 'jobA', ...})
qmp.execute('blockdev-create', arguments={'job-id': 'jobB', ...})

async for event in jobA.get():
if event['data']['status'] == 'concluded':

break
async for event in jobB.get():

if event['data']['status'] == 'concluded':
break

Note that in the above example, we explicitly wait on jobA to conclude first, and then wait for jobB to do the same. All
we have guaranteed is that the code that waits for jobA will not accidentally consume the event intended for the jobB
waiter.

8.7. Changelog 35

QEMU Monitor Protocol Library, Release unknown version

Extending the EventListener class

In the case that a more specialized EventListener is desired to provide either more functionality or more compact
syntax for specialized cases, it can be extended.

One of the key methods to extend or override is accept(). The default implementation checks an incoming message
for:

1. A qualifying name, if any names were specified at initialization time

2. That event_filter() returns True.

This can be modified however you see fit to change the criteria for inclusion in the stream.

For convenience, a JobListener class could be created that simply bakes in configuration so it does not need to be
repeated:

class JobListener(EventListener):
def __init__(self, job_id: str):

super().__init__(('BLOCK_JOB_COMPLETED', 'BLOCK_JOB_CANCELLED',
'BLOCK_JOB_ERROR', 'BLOCK_JOB_READY',
'BLOCK_JOB_PENDING', 'JOB_STATUS_CHANGE'))

self.job_id = job_id

def accept(self, event) -> bool:
if not super().accept(event):

return False
if event['event'] in ('BLOCK_JOB_PENDING', 'JOB_STATUS_CHANGE'):

return event['data']['id'] == job_id
return event['data']['device'] == job_id

From here on out, you can conjure up a custom-purpose listener that listens only for job-related events for a specific
job-id easily:

listener = JobListener('job4')
with qmp.listener(listener):

await qmp.execute('blockdev-backup', arguments={'job-id': 'job4', ...})
async for event in listener:

print(event)
if event['event'] == 'BLOCK_JOB_COMPLETED':

break

36 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

QEMU Monitor Protocol Library, Release unknown version

Experimental Interfaces & Design Issues

These interfaces are not ones I am sure I will keep or otherwise modify heavily.

qmp.listen()’s type signature

listen() does not return anything, because it was assumed the caller already had a handle to the listener. However,
for qmp.listen(EventListener()) forms, the caller will not have saved a handle to the listener.

Because this function can accept many listeners, I found it hard to accurately type in a way where it could be used in
both “one” or “many” forms conveniently and in a statically type-safe manner.

Ultimately, I removed the return altogether, but perhaps with more time I can work out a way to re-add it.

API Reference

class qemu.qmp.events.EventListener(names: Optional[Union[str, Iterable[str]]] = None, event_filter:
Optional[Callable[[Message], bool]] = None)

Bases: object

Selectively listens for events with runtime configurable filtering.

This class is designed to be directly usable for the most common cases, but it can be extended to provide more
rigorous control.

Parameters

• names – One or more names of events to listen for. When not provided, listen for ALL events.

• event_filter – An optional event filtering function. When names are also provided, this
acts as a secondary filter.

When names and event_filter are both provided, the names will be filtered first, and then the filter function
will be called second. The event filter function can assume that the format of the event is a known format.

accept(event: Message)→ bool
Determine if this listener accepts this event.

This method determines which events will appear in the stream. The default implementation simply checks
the event against the list of names and the event_filter to decide if this EventListener accepts a given
event. It can be overridden/extended to provide custom listener behavior.

User code is not expected to need to invoke this method.

Parameters
event – The event under consideration.

Returns
True, if this listener accepts this event.

clear()→ List[Message]
Clear this listener of all pending events.

Called when an EventListener is being unregistered, this clears the pending FIFO queue synchronously.
It can be also be used to manually clear any pending events, if desired.

Returns
The cleared events, if any.

8.7. Changelog 37

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/typing.html#typing.List

QEMU Monitor Protocol Library, Release unknown version

Warning: Take care when discarding events. Cleared events will be silently tossed on the floor. All
events that were ever accepted by this listener are visible in history().

empty()→ bool
Return True if there are no pending events.

event_filter: Optional[Callable[[Message], bool]]

Optional, secondary event filter.

async get()→ Message
Wait for the very next event in this stream.

If one is already available, return that one.

property history: Tuple[Message, ...]

A read-only history of all events seen so far.

This represents every event, including those not yet witnessed via get() or async for. It persists between
clear() calls and is immutable.

names: Set[str]

Primary event filter, based on one or more event names.

async put(event: Message)→ None
Conditionally put a new event into the FIFO queue.

This method is not designed to be invoked from user code, and it should not need to be overridden. It is
a public interface so that QMPClient has an interface by which it can inform registered listeners of new
events.

The event will be put into the queue if accept() returns True.

Parameters
event – The new event to put into the FIFO queue.

class qemu.qmp.events.Events

Bases: object

Events is a mix-in class that adds event functionality to the QMP class.

It’s designed specifically as a mix-in for QMPClient, and it relies upon the class it is being mixed into having a
‘logger’ property.

events: EventListener

Default, all-events EventListener. See qmp.events for more info.

listen(*listeners: EventListener)→ Iterator[None]
Context manager: Temporarily listen with an EventListener.

Accepts one or more EventListener objects and registers them, activating them for the duration of the
context block.

EventListener objects will have any pending events in their FIFO queue cleared upon exiting the context
block, when they are deactivated.

Parameters
*listeners – One or more EventListeners to activate.

Raises
ListenerError – If the given listener(s) are already active.

38 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/constants.html#None

QEMU Monitor Protocol Library, Release unknown version

listener(names: Optional[Union[str, Iterable[str]]] = (), event_filter: Optional[Callable[[Message], bool]]
= None)→ Iterator[EventListener]

Context manager: Temporarily listen with a new EventListener.

Creates an EventListener object and registers it, activating it for the duration of the context block.

Parameters

• names – One or more names of events to listen for. When not provided, listen for ALL
events.

• event_filter – An optional event filtering function. When names are also provided, this
acts as a secondary filter.

Returns
The newly created and active EventListener.

register_listener(listener: EventListener)→ None
Register and activate an EventListener.

Parameters
listener – The listener to activate.

Raises
ListenerError – If the given listener is already registered.

remove_listener(listener: EventListener)→ None
Unregister and deactivate an EventListener.

The removed listener will have its pending events cleared via clear(). The listener can be re-registered
later when desired.

Parameters
listener – The listener to deactivate.

Raises
ListenerError – If the given listener is not registered.

exception qemu.qmp.events.ListenerError

Bases: QMPError

Generic error class for EventListener-related problems.

Legacy API

(Legacy) Sync QMP Wrapper

This module provides the QEMUMonitorProtocol class, which is a synchronous wrapper around QMPClient.

Its design closely resembles that of the original QEMUMonitorProtocol class, originally written by Luiz Capitulino.
It is provided here for compatibility with scripts inside the QEMU source tree that expect the old interface.

class qemu.qmp.legacy.QEMUMonitorProtocol(address: Union[str, Tuple[str, int]], server: bool = False,
nickname: Optional[str] = None)

Bases: object

Provide an API to connect to QEMU via QEMU Monitor Protocol (QMP) and then allow to handle commands
and events.

Parameters

8.7. Changelog 39

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

QEMU Monitor Protocol Library, Release unknown version

• address – QEMU address, can be either a unix socket path (string) or a tuple in the form (
address, port) for a TCP connection

• server – Act as the socket server. (See ‘accept’)

• nickname – Optional nickname used for logging.

accept(timeout: Optional[float] = 15.0)→ Dict[str, Any]
Await connection from QMP Monitor and perform capabilities negotiation.

Parameters
timeout – timeout in seconds (nonnegative float number, or None). If None, there is no
timeout, and this may block forever.

Returns
QMP greeting dict

Raises
ConnectError – on connection errors

clear_events()→ None
Clear current list of pending events.

close()→ None
Close the connection.

cmd(name: str, args: Optional[Dict[str, object]] = None, cmd_id: Optional[object] = None)→ Dict[str, Any]
Build a QMP command and send it to the QMP Monitor.

Parameters

• name – command name (string)

• args – command arguments (dict)

• cmd_id – command id (dict, list, string or int)

cmd_obj(qmp_cmd: Dict[str, Any])→ Dict[str, Any]
Send a QMP command to the QMP Monitor.

Parameters
qmp_cmd – QMP command to be sent as a Python dict

Returns
QMP response as a Python dict

command(cmd: str, **kwds: object)→ object
Build and send a QMP command to the monitor, report errors if any

connect(negotiate: bool = True)→ Optional[Dict[str, Any]]
Connect to the QMP Monitor and perform capabilities negotiation.

Returns
QMP greeting dict, or None if negotiate is false

Raises
ConnectError – on connection errors

get_events(wait: Union[bool, float] = False)→ List[Dict[str, Any]]
Get a list of QMP events and clear all pending events.

40 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

QEMU Monitor Protocol Library, Release unknown version

Parameters
wait – If False or 0, do not wait. Return None if no events ready. If True, wait until we have
at least one event. Otherwise, wait for up to the specified number of seconds for at least one
event.

Raises
asyncio.TimeoutError – When a timeout is requested and the timeout period elapses.

Returns
A list of QMP events.

classmethod parse_address(address: str)→ Union[str, Tuple[str, int]]
Parse a string into a QMP address.

Figure out if the argument is in the port:host form. If it’s not, it’s probably a file path.

pull_event(wait: Union[bool, float] = False)→ Optional[Dict[str, Any]]
Pulls a single event.

Parameters
wait – If False or 0, do not wait. Return None if no events ready. If True, wait forever until
the next event. Otherwise, wait for the specified number of seconds.

Raises
asyncio.TimeoutError – When a timeout is requested and the timeout period elapses.

Returns
The first available QMP event, or None.

send_fd_scm(fd: int)→ None
Send a file descriptor to the remote via SCM_RIGHTS.

settimeout(timeout: Optional[float])→ None
Set the timeout for QMP RPC execution.

This timeout affects the cmd , cmd_obj, and command methods. The accept, pull_event and
get_events methods have their own configurable timeouts.

Parameters
timeout – timeout in seconds, or None. None will wait indefinitely.

exception qemu.qmp.legacy.QMPBadPortError

Bases: QMPError

Unable to parse socket address: Port was non-numerical.

qemu.qmp.legacy.QMPMessage

QMPMessage is an entire QMP message of any kind.

alias of Dict[str, Any]

qemu.qmp.legacy.QMPObject

QMPObject is any object in a QMP message.

alias of Dict[str, object]

qemu.qmp.legacy.QMPReturnValue

QMPReturnValue is the ‘return’ value of a command.

8.7. Changelog 41

https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.TimeoutError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

QEMU Monitor Protocol Library, Release unknown version

QMP Messages

QMP Message Format

This module provides the Message class, which represents a single QMP message sent to or from the server.

class qemu.qmp.message.Message(value: Union[bytes, Mapping[str, object]] = b'{}', *, eager: bool = True)
Bases: MutableMapping[str, object]

Represents a single QMP protocol message.

QMP uses JSON objects as its basic communicative unit; so this Python object is a MutableMapping. It may
be instantiated from either another mapping (like a dict), or from raw bytes that still need to be deserialized.

Once instantiated, it may be treated like any other MutableMapping:

>>> msg = Message(b'{"hello": "world"}')
>>> assert msg['hello'] == 'world'
>>> msg['id'] = 'foobar'
>>> print(msg)
{
"hello": "world",
"id": "foobar"

}

It can be converted to bytes:

>>> msg = Message({"hello": "world"})
>>> print(bytes(msg))
b'{"hello":"world","id":"foobar"}'

Or back into a garden-variety dict:

>>> dict(msg)
{'hello': 'world'}

Or pretty-printed:

>>> print(str(msg))
{
"hello": "world"

}

Parameters

• value – Initial value, if any.

• eager – When True, attempt to serialize or deserialize the initial value immediately, so that
conversion exceptions are raised during the call to __init__().

exception qemu.qmp.message.DeserializationError(error_message: str, raw: bytes)
Bases: ProtocolError

A QMP message was not understood as JSON.

When this Exception is raised, __cause__ will be set to the json.JSONDecodeError Exception, which can be
interrogated for further details.

Parameters

42 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/json.html#json.JSONDecodeError

QEMU Monitor Protocol Library, Release unknown version

• error_message – Human-readable string describing the error.

• raw – The raw bytes that prompted the failure.

raw: bytes

The raw bytes that were not understood as JSON.

error_message: str

Human-readable error message, without any prefix.

exception qemu.qmp.message.UnexpectedTypeError(error_message: str, value: object)
Bases: ProtocolError

A QMP message was JSON, but not a JSON object.

Parameters

• error_message – Human-readable string describing the error.

• value – The deserialized JSON value that wasn’t an object.

error_message: str

Human-readable error message, without any prefix.

value: object

The JSON value that was expected to be an object.

QMP Data Models

QMP Data Models

This module provides simplistic data classes that represent the few structures that the QMP spec mandates; they are
used to verify incoming data to make sure it conforms to spec.

class qemu.qmp.models.Model(raw: Mapping[str, Any])
Bases: object

Abstract data model, representing some QMP object of some kind.

Parameters
raw – The raw object to be validated.

Raises

• KeyError – If any required fields are absent.

• TypeError – If any required fields have the wrong type.

class qemu.qmp.models.Greeting(raw: Mapping[str, Any])
Bases: Model

Defined in qmp-spec.txt, section 2.2, “Server Greeting”.

See 2.2 Server Greeting for details.

Parameters
raw – The raw Greeting object.

Raises

• KeyError – If any required fields are absent.

• TypeError – If any required fields have the wrong type.

8.7. Changelog 43

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L61
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#TypeError

QEMU Monitor Protocol Library, Release unknown version

QMP: QMPGreeting

‘QMP’ member

class qemu.qmp.models.QMPGreeting(raw: Mapping[str, Any])
Bases: Model

Defined in qmp-spec.txt, section 2.2, “Server Greeting”.

Parameters
raw – The raw QMPGreeting object.

Raises

• KeyError – If any required fields are absent.

• TypeError – If any required fields have the wrong type.

version: Mapping[str, object]

‘version’ member

capabilities: Sequence[object]

‘capabilities’ member

class qemu.qmp.models.ErrorResponse(raw: Mapping[str, Any])
Bases: Model

Defined in qmp-spec.txt, section 2.4.2, “error”.

Parameters
raw – The raw ErrorResponse object.

Raises

• KeyError – If any required fields are absent.

• TypeError – If any required fields have the wrong type.

error: ErrorInfo

‘error’ member

id: Optional[object]

‘id’ member

class qemu.qmp.models.ErrorInfo(raw: Mapping[str, Any])
Bases: Model

Defined in qmp-spec.txt, section 2.4.2, “error”.

Parameters
raw – The raw ErrorInfo object.

Raises

• KeyError – If any required fields are absent.

• TypeError – If any required fields have the wrong type.

class_: str

‘class’ member, with an underscore to avoid conflicts in Python.

desc: str

‘desc’ member

44 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

QEMU Monitor Protocol Library, Release unknown version

Asyncio Protocol

Generic Asynchronous Message-based Protocol Support

This module provides a generic framework for sending and receiving messages over an asyncio stream.
AsyncProtocol is an abstract class that implements the core mechanisms of a simple send/receive protocol, and
is designed to be extended.

In this package, it is used as the implementation for the QMPClient class.

class qemu.qmp.protocol.Runstate(value)
Bases: Enum

Protocol session runstate.

IDLE = 0

Fully quiesced and disconnected.

CONNECTING = 1

In the process of connecting or establishing a session.

RUNNING = 2

Fully connected and active session.

DISCONNECTING = 3

In the process of disconnecting. Runstate may be returned to IDLE by calling disconnect().

exception qemu.qmp.protocol.ConnectError(error_message: str, exc: Exception)
Bases: QMPError

Raised when the initial connection process has failed.

This Exception always wraps a “root cause” exception that can be interrogated for additional information.

For example, when connecting to a non-existent socket:

await qmp.connect('not_found.sock')
ConnectError: Failed to establish connection:
[Errno 2] No such file or directory

Parameters

• error_message – Human-readable string describing the error.

• exc – The root-cause exception.

error_message: str

Human-readable error string

exc: Exception

Wrapped root cause exception

exception qemu.qmp.protocol.StateError(error_message: str, state: Runstate, required: Runstate)
Bases: QMPError

An API command (connect, execute, etc) was issued at an inappropriate time.

This error is raised when a command like connect() is called when the client is already connected.

Parameters

• error_message – Human-readable string describing the state violation.

8.7. Changelog 45

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

QEMU Monitor Protocol Library, Release unknown version

• state – The actual Runstate seen at the time of the violation.

• required – The Runstate required to process this command.

qemu.qmp.protocol.require(required_state: Runstate)→ Callable[[F], F]
Decorator: protect a method so it can only be run in a certain Runstate.

Parameters
required_state – The Runstate required to invoke this method.

Raises
StateError – When the required Runstate is not met.

class qemu.qmp.protocol.AsyncProtocol(name: Optional[str] = None)
Bases: Generic[T]

AsyncProtocol implements a generic async message-based protocol.

This protocol assumes the basic unit of information transfer between client and server is a “message”, the details
of which are left up to the implementation. It assumes the sending and receiving of these messages is full-duplex
and not necessarily correlated; i.e. it supports asynchronous inbound messages.

It is designed to be extended by a specific protocol which provides the implementations for how to read and send
messages. These must be defined in _do_recv() and _do_send(), respectively.

Other callbacks have a default implementation, but are intended to be either extended or overridden:

• _establish_session:
The base implementation starts the reader/writer tasks. A protocol implementation can override this
call, inserting actions to be taken prior to starting the reader/writer tasks before the super() call; actions
needing to occur afterwards can be written after the super() call.

• _on_message:
Actions to be performed when a message is received.

• _cb_outbound :
Logging/Filtering hook for all outbound messages.

• _cb_inbound :
Logging/Filtering hook for all inbound messages. This hook runs before _on_message().

Parameters
name – Name used for logging messages, if any. By default, messages will log to
‘qemu.qmp.protocol’, but each individual connection can be given its own logger by giving it
a name; messages will then log to ‘qemu.qmp.protocol.${name}’.

_limit = 65536

name: Optional[str]

The nickname for this connection, if any. This name is used for differentiating instances in debug output.

logger = <Logger qemu.qmp.protocol (WARNING)>

Logger object for debugging messages from this connection.

_dc_task: Optional[asyncio.Future[None]]

Disconnect task. The disconnect implementation runs in a task so that asynchronous disconnects (initiated
by the reader/writer) are allowed to wait for the reader/writers to exit.

property runstate: Runstate

The current Runstate of the connection.

46 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} future.html#asyncio.Future
https://docs.python.org/3/library/constants.html#None

QEMU Monitor Protocol Library, Release unknown version

async runstate_changed()→ Runstate
Wait for the runstate to change, then return that Runstate.

async start_server_and_accept(address: Union[str, Tuple[str, int]], ssl: Optional[SSLContext] =
None)→ None

Accept a connection and begin processing message queues.

If this call fails, runstate is guaranteed to be set back to IDLE. This method is precisely equivalent to
calling start_server() followed by accept().

Parameters

• address – Address to listen on; UNIX socket path or TCP address/port.

• ssl – SSL context to use, if any.

Raises

• StateError – When the Runstate is not IDLE.

• ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases, the wrapped exception will be
OSError or EOFError. If a protocol-level failure occurs while establishing a new session,
the wrapped error may also be a QMPError.

async start_server(address: Union[str, Tuple[str, int]], ssl: Optional[SSLContext] = None)→ None
Start listening for an incoming connection, but do not wait for a peer.

This method starts listening for an incoming connection, but does not block waiting for a peer. This call
will return immediately after binding and listening on a socket. A later call to accept() must be made in
order to finalize the incoming connection.

Parameters

• address – Address to listen on; UNIX socket path or TCP address/port.

• ssl – SSL context to use, if any.

Raises

• StateError – When the Runstate is not IDLE.

• ConnectError – When the server could not start listening on this address.

This exception will wrap a more concrete one. In most cases, the wrapped exception will
be OSError.

async accept()→ None
Accept an incoming connection and begin processing message queues.

Used after a previous call to start_server() to accept an incoming connection. If this call fails,
runstate is guaranteed to be set back to IDLE.

Raises

• StateError – When the Runstate is not CONNECTING .

• QMPError – When start_server() was not called first.

• ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases, the wrapped exception will be
OSError or EOFError. If a protocol-level failure occurs while establishing a new session,
the wrapped error may also be an QMPError.

8.7. Changelog 47

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#EOFError

QEMU Monitor Protocol Library, Release unknown version

async connect(address: Union[str, Tuple[str, int]], ssl: Optional[SSLContext] = None)→ None
Connect to the server and begin processing message queues.

If this call fails, runstate is guaranteed to be set back to IDLE.

Parameters

• address – Address to connect to; UNIX socket path or TCP address/port.

• ssl – SSL context to use, if any.

Raises

• StateError – When the Runstate is not IDLE.

• ConnectError – When a connection or session cannot be established.

This exception will wrap a more concrete one. In most cases, the wrapped exception will be
OSError or EOFError. If a protocol-level failure occurs while establishing a new session,
the wrapped error may also be an QMPError.

async disconnect()→ None
Disconnect and wait for all tasks to fully stop.

If there was an exception that caused the reader/writers to terminate prematurely, it will be raised here.

Raises
Exception – When the reader or writer terminate unexpectedly. You can expect to see
EOFError if the server hangs up, or OSError for connection-related issues. If there was
a QMP protocol-level problem, ProtocolError will be seen.

async _session_guard(coro: Awaitable[None], emsg: str)→ None
Async guard function used to roll back to IDLE on any error.

On any Exception, the state machine will be reset back to IDLE. Most Exceptions will be wrapped with
ConnectError, but BaseException events will be left alone (This includes asyncio.CancelledError, even
prior to Python 3.8).

Parameters
error_message – Human-readable string describing what connection phase failed.

Raises

• BaseException – When BaseException occurs in the guarded block.

• ConnectError – When any other error is encountered in the guarded block.

property _runstate_event: Event

_set_state(state: Runstate)→ None
Change the Runstate of the protocol connection.

Signals the runstate_changed event.

async _stop_server()→ None
Stop listening for / accepting new incoming connections.

async _incoming(reader: StreamReader, writer: StreamWriter)→ None
Accept an incoming connection and signal the upper_half.

This method does the minimum necessary to accept a single incoming connection. It signals back to the
upper_half ASAP so that any errors during session initialization can occur naturally in the caller’s stack.

Parameters

48 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

QEMU Monitor Protocol Library, Release unknown version

• reader – Incoming asyncio.StreamReader

• writer – Incoming asyncio.StreamWriter

async _do_start_server(address: Union[str, Tuple[str, int]], ssl: Optional[SSLContext] = None)→
None

Start listening for an incoming connection, but do not wait for a peer.

This method starts listening for an incoming connection, but does not block waiting for a peer. This call
will return immediately after binding and listening to a socket. A later call to accept() must be made in
order to finalize the incoming connection.

Parameters

• address – Address to listen on; UNIX socket path or TCP address/port.

• ssl – SSL context to use, if any.

Raises
OSError – For stream-related errors.

async _do_accept()→ None
Wait for and accept an incoming connection.

Requires that we have not yet accepted an incoming connection from the upper_half, but it’s OK if the
server is no longer running because the bottom_half has already accepted the connection.

async _do_connect(address: Union[str, Tuple[str, int]], ssl: Optional[SSLContext] = None)→ None
Acting as the transport client, initiate a connection to a server.

Parameters

• address – Address to connect to; UNIX socket path or TCP address/port.

• ssl – SSL context to use, if any.

Raises
OSError – For stream-related errors.

async _establish_session()→ None
Establish a new session.

Starts the readers/writer tasks; subclasses may perform their own negotiations here. The Runstate will be
RUNNING upon successful conclusion.

_schedule_disconnect()→ None
Initiate a disconnect; idempotent.

This method is used both in the upper-half as a direct consequence of disconnect(), and in the bottom-
half in the case of unhandled exceptions in the reader/writer tasks.

It can be invoked no matter what the runstate is.

async _wait_disconnect()→ None
Waits for a previously scheduled disconnect to finish.

This method will gather any bottom half exceptions and re-raise the one that occurred first; presuming it to
be the root cause of any subsequent Exceptions. It is intended to be used in the upper half of the call chain.

Raises
Exception – Arbitrary exception re-raised on behalf of the reader/writer.

8.7. Changelog 49

https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception

QEMU Monitor Protocol Library, Release unknown version

_cleanup()→ None
Fully reset this object to a clean state and return to IDLE.

async _bh_disconnect()→ None
Disconnect and cancel all outstanding tasks.

It is designed to be called from its task context, _dc_task . By running in its own task, it is free to wait on
any pending actions that may still need to occur in either the reader or writer tasks.

async _bh_flush_writer()→ None

async _bh_close_stream(error_pathway: bool = False)→ None

async _bh_loop_forever(async_fn: Callable[[], Awaitable[None]], name: str)→ None
Run one of the bottom-half methods in a loop forever.

If the bottom half ever raises any exception, schedule a disconnect that will terminate the entire loop.

Parameters

• async_fn – The bottom-half method to run in a loop.

• name – The name of this task, used for logging.

async _bh_send_message()→ None
Wait for an outgoing message, then send it.

Designed to be run in _bh_loop_forever().

async _bh_recv_message()→ None
Wait for an incoming message and call _on_message to route it.

Designed to be run in _bh_loop_forever().

_cb_outbound(msg: T)→ T
Callback: outbound message hook.

This is intended for subclasses to be able to add arbitrary hooks to filter or manipulate outgoing messages.
The base implementation does nothing but log the message without any manipulation of the message.

Parameters
msg – raw outbound message

Returns
final outbound message

_cb_inbound(msg: T)→ T
Callback: inbound message hook.

This is intended for subclasses to be able to add arbitrary hooks to filter or manipulate incoming messages.
The base implementation does nothing but log the message without any manipulation of the message.

This method does not “handle” incoming messages; it is a filter. The actual “endpoint” for incoming mes-
sages is _on_message().

Parameters
msg – raw inbound message

Returns
processed inbound message

50 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

QEMU Monitor Protocol Library, Release unknown version

async _readline()→ bytes
Wait for a newline from the incoming reader.

This method is provided as a convenience for upper-layer protocols, as many are line-based.

This method may return a sequence of bytes without a trailing newline if EOF occurs, but some bytes were
received. In this case, the next call will raise EOFError. It is assumed that the layer 5 protocol will decide
if there is anything meaningful to be done with a partial message.

Raises

• OSError – For stream-related errors.

• EOFError – If the reader stream is at EOF and there are no bytes to return.

Returns
bytes, including the newline.

async _do_recv()→ T
Abstract: Read from the stream and return a message.

Very low-level; intended to only be called by _recv().

async _recv()→ T
Read an arbitrary protocol message.

Warning: This method is intended primarily for _bh_recv_message() to use in an asynchronous
task loop. Using it outside of this loop will “steal” messages from the normal routing mechanism. It is
safe to use prior to _establish_session(), but should not be used otherwise.

This method uses _do_recv() to retrieve the raw message, and then transforms it using _cb_inbound().

Returns
A single (filtered, processed) protocol message.

_do_send(msg: T)→ None
Abstract: Write a message to the stream.

Very low-level; intended to only be called by _send().

async _send(msg: T)→ None
Send an arbitrary protocol message.

This method will transform any outgoing messages according to _cb_outbound().

Warning: Like _recv(), this method is intended to be called by the writer task loop that processes
outgoing messages. Calling it directly may circumvent logic implemented by the caller meant to corre-
late outgoing and incoming messages.

Raises
OSError – For problems with the underlying stream.

async _on_message(msg: T)→ None
Called to handle the receipt of a new message.

8.7. Changelog 51

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/constants.html#None

QEMU Monitor Protocol Library, Release unknown version

Caution: This is executed from within the reader loop, so be advised that waiting on either the reader
or writer task will lead to deadlock. Additionally, any unhandled exceptions will directly cause the loop
to halt, so logic may be best-kept to a minimum if at all possible.

Parameters
msg – The incoming message, already logged/filtered.

QMP Protocol

QMP Protocol Implementation

This module provides the QMPClient class, which can be used to connect and send commands to a QMP server such
as QEMU. The QMP class can be used to either connect to a listening server, or used to listen and accept an incoming
connection from that server.

exception qemu.qmp.qmp_client.GreetingError(error_message: str, exc: Exception)
Bases: _WrappedProtocolError

An exception occurred during the Greeting phase.

Parameters

• error_message – Human-readable string describing the error.

• exc – The root-cause exception.

error_message: str

Human-readable error message, without any prefix.

exception qemu.qmp.qmp_client.NegotiationError(error_message: str, exc: Exception)
Bases: _WrappedProtocolError

An exception occurred during the Negotiation phase.

Parameters

• error_message – Human-readable string describing the error.

• exc – The root-cause exception.

error_message: str

Human-readable error message, without any prefix.

exception qemu.qmp.qmp_client.ExecuteError(error_response: ErrorResponse, sent: Message, received:
Message)

Bases: QMPError

Exception raised by QMPClient.execute() on RPC failure.

This exception is raised when the server received, interpreted, and replied to a command successfully; but the
command itself returned a failure status.

For example:

await qmp.execute('block-dirty-bitmap-add',
{'node': 'foo', 'name': 'my_bitmap'})

qemu.qmp.qmp_client.ExecuteError:
Cannot find device='foo' nor node-name='foo'

52 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

QEMU Monitor Protocol Library, Release unknown version

Parameters

• error_response – The RPC error response object.

• sent – The sent RPC message that caused the failure.

• received – The raw RPC error reply received.

sent: Message

The sent Message that caused the failure

received: Message

The received Message that indicated failure

error: ErrorResponse

The parsed error response

error_class: str

The QMP error class

exception qemu.qmp.qmp_client.ExecInterruptedError

Bases: QMPError

Exception raised by execute() (et al) when an RPC is interrupted.

This error is raised when an execute() statement could not be completed. This can occur because the connec-
tion itself was terminated before a reply was received. The true cause of the interruption will be available via
disconnect().

The QMP protocol does not make it possible to know if a command succeeded or failed after such an event; the
client will need to query the server to determine the state of the server on a case-by-case basis.

For example, ECONNRESET might look like this:

try:
await qmp.execute('query-block')
ExecInterruptedError: Disconnected

except ExecInterruptedError:
await qmp.disconnect()
ConnectionResetError: [Errno 104] Connection reset by peer

exception qemu.qmp.qmp_client.ServerParseError(error_message: str, msg: Message)
Bases: _MsgProtocolError

The Server sent a Message indicating parsing failure.

i.e. A reply has arrived from the server, but it is missing the “ID” field, indicating a parsing error.

Parameters

• error_message – Human-readable string describing the error.

• msg – The QMP Message that caused the error.

error_message: str

Human-readable error message, without any prefix.

exception qemu.qmp.qmp_client.BadReplyError(error_message: str, msg: Message, sent: Message)
Bases: _MsgProtocolError

An execution reply was successfully routed, but not understood.

8.7. Changelog 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

QEMU Monitor Protocol Library, Release unknown version

If a QMP message is received with an ‘id’ field to allow it to be routed, but is otherwise malformed, this exception
will be raised.

A reply message is malformed if it is missing either the ‘return’ or ‘error’ keys, or if the ‘error’ value has missing
keys or members of the wrong type.

Parameters

• error_message – Human-readable string describing the error.

• msg – The malformed reply that was received.

• sent – The message that was sent that prompted the error.

sent

The sent Message that caused the failure

error_message: str

Human-readable error message, without any prefix.

class qemu.qmp.qmp_client.QMPClient(name: Optional[str] = None)
Bases: AsyncProtocol[Message], Events

Implements a QMP client connection.

QMPClient can be used to either connect or listen to a QMP server, but always acts as the QMP client.

Parameters
name – Optional nickname for the connection, used to differentiate instances when logging.

Basic script-style usage looks like this:

import asyncio
from qemu.qmp import QMPClient

async def main():
qmp = QMPClient('my_virtual_machine_name')
await qmp.connect(('127.0.0.1', 1234))
...
res = await qmp.execute('query-block')
...
await qmp.disconnect()

asyncio.run(main())

A more advanced example that starts to take advantage of asyncio might look like this:

class Client:
def __init__(self, name: str):

self.qmp = QMPClient(name)

async def watch_events(self):
try:

async for event in self.qmp.events:
print(f"Event: {event['event']}")

except asyncio.CancelledError:
return

async def run(self, address='/tmp/qemu.socket'):
(continues on next page)

54 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

QEMU Monitor Protocol Library, Release unknown version

(continued from previous page)

await self.qmp.connect(address)
asyncio.create_task(self.watch_events())
await self.qmp.runstate_changed.wait()
await self.disconnect()

See qmp.events for more detail on event handling patterns.

logger: logging.Logger = <Logger qemu.qmp.qmp_client (WARNING)>

Logger object used for debugging messages.

await_greeting: bool

Whether or not to await a greeting after establishing a connection. Defaults to True; QGA servers expect
this to be False.

negotiate: bool

Whether or not to perform capabilities negotiation upon connection. Implies await_greeting. Defaults
to True; QGA servers expect this to be False.

property greeting: Optional[Greeting]

The Greeting from the QMP server, if any.

Defaults to None, and will be set after a greeting is received during the connection process. It is reset at the
start of each connection attempt.

async execute_msg(msg: Message)→ object
Execute a QMP command on the server and return its value.

Parameters
msg – The QMP Message to execute.

Returns
The command execution return value from the server. The type of object returned depends
on the command that was issued, though most in QEMU return a dict.

Raises

• ValueError – If the QMP Message does not have either the ‘execute’ or ‘exec-oob’ fields
set.

• ExecuteError – When the server returns an error response.

• ExecInterruptedError – If the connection was disrupted before receiving a reply from
the server.

classmethod make_execute_msg(cmd: str, arguments: Optional[Mapping[str, object]] = None, oob: bool
= False)→ Message

Create an executable message to be sent by execute_msg later.

Parameters

• cmd – QMP command name.

• arguments – Arguments (if any). Must be JSON-serializable.

• oob – If True, execute “out of band”.

Returns
A QMP Message that can be executed with execute_msg().

8.7. Changelog 55

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L116

QEMU Monitor Protocol Library, Release unknown version

async execute(cmd: str, arguments: Optional[Mapping[str, object]] = None, oob: bool = False)→ object
Execute a QMP command on the server and return its value.

Parameters

• cmd – QMP command name.

• arguments – Arguments (if any). Must be JSON-serializable.

• oob – If True, execute “out of band”.

Returns
The command execution return value from the server. The type of object returned depends
on the command that was issued, though most in QEMU return a dict.

Raises

• ExecuteError – When the server returns an error response.

• ExecInterruptedError – If the connection was disrupted before receiving a reply from
the server.

send_fd_scm(fd: int)→ None
Send a file descriptor to the remote via SCM_RIGHTS.

This method does not close the file descriptor.

Parameters
fd – The file descriptor to send to QEMU.

This is an advanced feature of QEMU where file descriptors can be passed from client to server. This is
usually used as a security measure to isolate the QEMU process from being able to open its own files. See
the QMP commands getfd and add-fd for more information.

See socket.socket.sendmsg for more information on the Python implementation for sending file de-
scriptors over a UNIX socket.

name: Optional[str]

The nickname for this connection, if any. This name is used for differentiating instances in debug output.

events: EventListener

Default, all-events EventListener. See qmp.events for more info.

Utilities

Miscellaneous Utilities

This module provides asyncio utilities and compatibility wrappers for Python 3.6 to provide some features that other-
wise become available in Python 3.7+.

Various logging and debugging utilities are also provided, such as exception_summary() and
pretty_traceback(), used primarily for adding information into the logging stream.

async qemu.qmp.util.flush(writer: StreamWriter)→ None
Utility function to ensure an asyncio.StreamWriter is fully drained.

asyncio.StreamWriter.drain only promises we will return to below the “high-water mark”. This function
ensures we flush the entire buffer – by setting the high water mark to 0 and then calling drain. The flow control
limits are restored after the call is completed.

56 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#True
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qmp-spec.txt#L116
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/socket.html#socket.socket.sendmsg
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter.drain

QEMU Monitor Protocol Library, Release unknown version

qemu.qmp.util.upper_half(func: T)→ T
Do-nothing decorator that annotates a method as an “upper-half” method.

These methods must not call bottom-half functions directly, but can schedule them to run.

qemu.qmp.util.bottom_half(func: T)→ T
Do-nothing decorator that annotates a method as a “bottom-half” method.

These methods must take great care to handle their own exceptions whenever possible. If they go unhandled,
they will cause termination of the loop.

These methods do not, in general, have the ability to directly report information to a caller’s context and will
usually be collected as an asyncio.Task result instead.

They must not call upper-half functions directly.

qemu.qmp.util.create_task(coro: Coroutine[Any, Any, T], loop: Optional[AbstractEventLoop] = None)→
asyncio.Future[T]

Python 3.6-compatible asyncio.create_task wrapper.

Parameters

• coro – The coroutine to execute in a task.

• loop – Optionally, the loop to create the task in.

Returns
An asyncio.Future object.

qemu.qmp.util.is_closing(writer: StreamWriter)→ bool
Python 3.6-compatible asyncio.StreamWriter.is_closing wrapper.

Parameters
writer – The asyncio.StreamWriter object.

Returns
True if the writer is closing, or closed.

async qemu.qmp.util.wait_closed(writer: StreamWriter)→ None
Python 3.6-compatible asyncio.StreamWriter.wait_closed wrapper.

Parameters
writer – The asyncio.StreamWriter to wait on.

qemu.qmp.util.asyncio_run(coro: Coroutine[Any, Any, T], *, debug: bool = False)→ T
Python 3.6-compatible asyncio.run wrapper.

Parameters
coro – A coroutine to execute now.

Returns
The return value from the coroutine.

qemu.qmp.util.exception_summary(exc: BaseException)→ str
Return a summary string of an arbitrary exception.

It will be of the form “ExceptionType: Error Message” if the error string is non-empty, and just “ExceptionType”
otherwise.

This code is based on CPython’s implementation of traceback.TracebackException.
format_exception_only.

8.7. Changelog 57

https://docs.python.org/3/library/asyncio-task.html#asyncio.Task
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio-task.html#asyncio.create_task
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter.is_closing
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter.wait_closed
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/typing.html#typing.Coroutine
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/asyncio-task.html#asyncio.run
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/traceback.html#traceback.TracebackException.format_exception_only
https://docs.python.org/3/library/traceback.html#traceback.TracebackException.format_exception_only

QEMU Monitor Protocol Library, Release unknown version

qemu.qmp.util.pretty_traceback(prefix: str = ' | ')→ str
Formats the current traceback, indented to provide visual distinction.

This is useful for printing a traceback within a traceback for debugging purposes when encapsulating errors to
deliver them up the stack; when those errors are printed, this helps provide a nice visual grouping to quickly
identify the parts of the error that belong to the inner exception.

Parameters
prefix – The prefix to append to each line of the traceback.

Returns

A string, formatted something like the following:

| Traceback (most recent call last):
| File "foobar.py", line 42, in arbitrary_example
| foo.baz()
| ArbitraryError: [Errno 42] Something bad happened!

58 Chapter 8. qemu.qmp: QEMU Monitor Protocol Library

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

59

QEMU Monitor Protocol Library, Release unknown version

60 Chapter 9. Indices and tables

PYTHON MODULE INDEX

q
qemu.qmp.error, 29
qemu.qmp.events, 30
qemu.qmp.legacy, 39
qemu.qmp.message, 42
qemu.qmp.models, 43
qemu.qmp.protocol, 45
qemu.qmp.qmp_client, 52
qemu.qmp.util, 56

61

QEMU Monitor Protocol Library, Release unknown version

62 Python Module Index

INDEX

Symbols
_bh_close_stream() (qemu.qmp.protocol.AsyncProtocol

method), 50
_bh_disconnect() (qemu.qmp.protocol.AsyncProtocol

method), 50
_bh_flush_writer() (qemu.qmp.protocol.AsyncProtocol

method), 50
_bh_loop_forever() (qemu.qmp.protocol.AsyncProtocol

method), 50
_bh_recv_message() (qemu.qmp.protocol.AsyncProtocol

method), 50
_bh_send_message() (qemu.qmp.protocol.AsyncProtocol

method), 50
_cb_inbound() (qemu.qmp.protocol.AsyncProtocol

method), 50
_cb_outbound() (qemu.qmp.protocol.AsyncProtocol

method), 50
_cleanup() (qemu.qmp.protocol.AsyncProtocol

method), 49
_dc_task (qemu.qmp.protocol.AsyncProtocol attribute),

46
_do_accept() (qemu.qmp.protocol.AsyncProtocol

method), 49
_do_connect() (qemu.qmp.protocol.AsyncProtocol

method), 49
_do_recv() (qemu.qmp.protocol.AsyncProtocol

method), 51
_do_send() (qemu.qmp.protocol.AsyncProtocol

method), 51
_do_start_server() (qemu.qmp.protocol.AsyncProtocol

method), 49
_establish_session()

(qemu.qmp.protocol.AsyncProtocol method),
49

_incoming() (qemu.qmp.protocol.AsyncProtocol
method), 48

_limit (qemu.qmp.protocol.AsyncProtocol attribute), 46
_on_message() (qemu.qmp.protocol.AsyncProtocol

method), 51
_readline() (qemu.qmp.protocol.AsyncProtocol

method), 50
_recv() (qemu.qmp.protocol.AsyncProtocol method), 51

_runstate_event (qemu.qmp.protocol.AsyncProtocol
property), 48

_schedule_disconnect()
(qemu.qmp.protocol.AsyncProtocol method),
49

_send() (qemu.qmp.protocol.AsyncProtocol method), 51
_session_guard() (qemu.qmp.protocol.AsyncProtocol

method), 48
_set_state() (qemu.qmp.protocol.AsyncProtocol

method), 48
_stop_server() (qemu.qmp.protocol.AsyncProtocol

method), 48
_wait_disconnect() (qemu.qmp.protocol.AsyncProtocol

method), 49

A
accept() (qemu.qmp.events.EventListener method), 37
accept() (qemu.qmp.legacy.QEMUMonitorProtocol

method), 40
accept() (qemu.qmp.protocol.AsyncProtocol method),

47
asyncio_run() (in module qemu.qmp.util), 57
AsyncProtocol (class in qemu.qmp.protocol), 46
await_greeting (qemu.qmp.qmp_client.QMPClient at-

tribute), 55

B
BadReplyError, 53
bottom_half() (in module qemu.qmp.util), 57

C
capabilities (qemu.qmp.models.QMPGreeting at-

tribute), 44
class_ (qemu.qmp.models.ErrorInfo attribute), 44
clear() (qemu.qmp.events.EventListener method), 37
clear_events() (qemu.qmp.legacy.QEMUMonitorProtocol

method), 40
close() (qemu.qmp.legacy.QEMUMonitorProtocol

method), 40
cmd() (qemu.qmp.legacy.QEMUMonitorProtocol

method), 40

63

QEMU Monitor Protocol Library, Release unknown version

cmd_obj() (qemu.qmp.legacy.QEMUMonitorProtocol
method), 40

command() (qemu.qmp.legacy.QEMUMonitorProtocol
method), 40

connect() (qemu.qmp.legacy.QEMUMonitorProtocol
method), 40

connect() (qemu.qmp.protocol.AsyncProtocol method),
47

ConnectError, 45
CONNECTING (qemu.qmp.protocol.Runstate attribute), 45
create_task() (in module qemu.qmp.util), 57

D
desc (qemu.qmp.models.ErrorInfo attribute), 44
DeserializationError, 42
disconnect() (qemu.qmp.protocol.AsyncProtocol

method), 48
DISCONNECTING (qemu.qmp.protocol.Runstate attribute),

45

E
empty() (qemu.qmp.events.EventListener method), 38
error (qemu.qmp.models.ErrorResponse attribute), 44
error (qemu.qmp.qmp_client.ExecuteError attribute), 53
error_class (qemu.qmp.qmp_client.ExecuteError at-

tribute), 53
error_message (qemu.qmp.error.ProtocolError at-

tribute), 29
error_message (qemu.qmp.message.DeserializationError

attribute), 43
error_message (qemu.qmp.message.UnexpectedTypeError

attribute), 43
error_message (qemu.qmp.protocol.ConnectError at-

tribute), 45
error_message (qemu.qmp.qmp_client.BadReplyError

attribute), 54
error_message (qemu.qmp.qmp_client.GreetingError

attribute), 52
error_message (qemu.qmp.qmp_client.NegotiationError

attribute), 52
error_message (qemu.qmp.qmp_client.ServerParseError

attribute), 53
ErrorInfo (class in qemu.qmp.models), 44
ErrorResponse (class in qemu.qmp.models), 44
event_filter (qemu.qmp.events.EventListener at-

tribute), 38
EventListener (class in qemu.qmp.events), 37
Events (class in qemu.qmp.events), 38
events (qemu.qmp.events.Events attribute), 38
events (qemu.qmp.qmp_client.QMPClient attribute), 56
exc (qemu.qmp.protocol.ConnectError attribute), 45
exception_summary() (in module qemu.qmp.util), 57
ExecInterruptedError, 53

execute() (qemu.qmp.qmp_client.QMPClient method),
55

execute_msg() (qemu.qmp.qmp_client.QMPClient
method), 55

ExecuteError, 52

F
flush() (in module qemu.qmp.util), 56

G
get() (qemu.qmp.events.EventListener method), 38
get_events() (qemu.qmp.legacy.QEMUMonitorProtocol

method), 40
Greeting (class in qemu.qmp.models), 43
greeting (qemu.qmp.qmp_client.QMPClient property),

55
GreetingError, 52

H
history (qemu.qmp.events.EventListener property), 38

I
id (qemu.qmp.models.ErrorResponse attribute), 44
IDLE (qemu.qmp.protocol.Runstate attribute), 45
is_closing() (in module qemu.qmp.util), 57

L
listen() (qemu.qmp.events.Events method), 38
listener() (qemu.qmp.events.Events method), 38
ListenerError, 39
logger (qemu.qmp.protocol.AsyncProtocol attribute), 46
logger (qemu.qmp.qmp_client.QMPClient attribute), 55

M
make_execute_msg() (qemu.qmp.qmp_client.QMPClient

class method), 55
Message (class in qemu.qmp.message), 42
Model (class in qemu.qmp.models), 43
module

qemu.qmp.error, 29
qemu.qmp.events, 30
qemu.qmp.legacy, 39
qemu.qmp.message, 42
qemu.qmp.models, 43
qemu.qmp.protocol, 45
qemu.qmp.qmp_client, 52
qemu.qmp.util, 56

N
name (qemu.qmp.protocol.AsyncProtocol attribute), 46
name (qemu.qmp.qmp_client.QMPClient attribute), 56
names (qemu.qmp.events.EventListener attribute), 38

64 Index

QEMU Monitor Protocol Library, Release unknown version

negotiate (qemu.qmp.qmp_client.QMPClient at-
tribute), 55

NegotiationError, 52

P
parse_address() (qemu.qmp.legacy.QEMUMonitorProtocol

class method), 41
pretty_traceback() (in module qemu.qmp.util), 57
ProtocolError, 29
pull_event() (qemu.qmp.legacy.QEMUMonitorProtocol

method), 41
put() (qemu.qmp.events.EventListener method), 38

Q
qemu.qmp.error

module, 29
qemu.qmp.events
module, 30

qemu.qmp.legacy
module, 39

qemu.qmp.message
module, 42

qemu.qmp.models
module, 43

qemu.qmp.protocol
module, 45

qemu.qmp.qmp_client
module, 52

qemu.qmp.util
module, 56

QEMUMonitorProtocol (class in qemu.qmp.legacy), 39
QMP (qemu.qmp.models.Greeting attribute), 43
QMPBadPortError, 41
QMPClient (class in qemu.qmp.qmp_client), 54
QMPError, 29
QMPGreeting (class in qemu.qmp.models), 44
QMPMessage (in module qemu.qmp.legacy), 41
QMPObject (in module qemu.qmp.legacy), 41
QMPReturnValue (in module qemu.qmp.legacy), 41

R
raw (qemu.qmp.message.DeserializationError attribute),

43
received (qemu.qmp.qmp_client.ExecuteError at-

tribute), 53
register_listener() (qemu.qmp.events.Events

method), 39
remove_listener() (qemu.qmp.events.Events method),

39
require() (in module qemu.qmp.protocol), 46
RUNNING (qemu.qmp.protocol.Runstate attribute), 45
Runstate (class in qemu.qmp.protocol), 45
runstate (qemu.qmp.protocol.AsyncProtocol property),

46

runstate_changed() (qemu.qmp.protocol.AsyncProtocol
method), 46

S
send_fd_scm() (qemu.qmp.legacy.QEMUMonitorProtocol

method), 41
send_fd_scm() (qemu.qmp.qmp_client.QMPClient

method), 56
sent (qemu.qmp.qmp_client.BadReplyError attribute),

54
sent (qemu.qmp.qmp_client.ExecuteError attribute), 53
ServerParseError, 53
settimeout() (qemu.qmp.legacy.QEMUMonitorProtocol

method), 41
start_server() (qemu.qmp.protocol.AsyncProtocol

method), 47
start_server_and_accept()

(qemu.qmp.protocol.AsyncProtocol method),
47

StateError, 45

U
UnexpectedTypeError, 43
upper_half() (in module qemu.qmp.util), 56

V
value (qemu.qmp.message.UnexpectedTypeError at-

tribute), 43
version (qemu.qmp.models.QMPGreeting attribute), 44

W
wait_closed() (in module qemu.qmp.util), 57

Index 65

	Who is this library for?
	Who isn’t this library for?
	Installing
	Usage
	Contributing
	Developing

	Stability and Versioning
	Changelog
	0.0.1 (2022-07-20)

	qemu.qmp: QEMU Monitor Protocol Library
	Who is this library for?
	Who isn’t this library for?
	Installing
	Usage
	Contributing
	Developing

	Stability and Versioning
	Changelog
	0.0.1 (2022-07-20)
	Overview
	Classes
	QMPClient
	Message
	EventListener
	Runstate

	Exceptions

	Error classes
	Events
	EventListener Tutorial
	listener() context blocks with one name
	listener() context blocks with two or more names
	listener() context blocks with no names
	Using async iterators to retrieve events
	Using asyncio.Task to concurrently retrieve events
	Using register_listener() and remove_listener()
	Using the built-in all events listener
	Using both .get() and async iterators
	Creating multiple listeners
	Clearing listeners
	Accessing listener history
	Using event filters
	Activating an existing listener with listen()
	Activating multiple existing listeners with listen()
	Extending the EventListener class

	Experimental Interfaces & Design Issues
	qmp.listen()’s type signature

	API Reference

	Legacy API
	QMP Messages
	QMP Data Models

	Asyncio Protocol
	QMP Protocol
	Utilities

	Indices and tables
	Python Module Index
	Index

