QEMU TCG Plugins

QEMU TCG plugins provide a way for users to run experiments taking advantage of the total system control emulation can have over a guest. It provides a mechanism for plugins to subscribe to events during translation and execution and optionally callback into the plugin during these events. TCG plugins are unable to change the system state only monitor it passively. However they can do this down to an individual instruction granularity including potentially subscribing to all load and store operations.

API Stability

This is a new feature for QEMU and it does allow people to develop out-of-tree plugins that can be dynamically linked into a running QEMU process. However the project reserves the right to change or break the API should it need to do so. The best way to avoid this is to submit your plugin upstream so they can be updated if/when the API changes.

API versioning

All plugins need to declare a symbol which exports the plugin API version they were built against. This can be done simply by:


The core code will refuse to load a plugin that doesn’t export a qemu_plugin_version symbol or if plugin version is outside of QEMU’s supported range of API versions.

Additionally the qemu_info_t structure which is passed to the qemu_plugin_install method of a plugin will detail the minimum and current API versions supported by QEMU. The API version will be incremented if new APIs are added. The minimum API version will be incremented if existing APIs are changed or removed.

Exposure of QEMU internals

The plugin architecture actively avoids leaking implementation details about how QEMU’s translation works to the plugins. While there are conceptions such as translation time and translation blocks the details are opaque to plugins. The plugin is able to query select details of instructions and system configuration only through the exported qemu_plugin functions.

Query Handle Lifetime

Each callback provides an opaque anonymous information handle which can usually be further queried to find out information about a translation, instruction or operation. The handles themselves are only valid during the lifetime of the callback so it is important that any information that is needed is extracted during the callback and saved by the plugin.


The QEMU binary needs to be compiled for plugin support:

configure --enable-plugins

Once built a program can be run with multiple plugins loaded each with their own arguments:

    -plugin tests/plugin/libhowvec.so,arg=inline,arg=hint \
    -plugin tests/plugin/libhotblocks.so

Arguments are plugin specific and can be used to modify their behaviour. In this case the howvec plugin is being asked to use inline ops to count and break down the hint instructions by type.

Plugin Life cycle

First the plugin is loaded and the public qemu_plugin_install function is called. The plugin will then register callbacks for various plugin events. Generally plugins will register a handler for the atexit if they want to dump a summary of collected information once the program/system has finished running.

When a registered event occurs the plugin callback is invoked. The callbacks may provide additional information. In the case of a translation event the plugin has an option to enumerate the instructions in a block of instructions and optionally register callbacks to some or all instructions when they are executed.

There is also a facility to add an inline event where code to increment a counter can be directly inlined with the translation. Currently only a simple increment is supported. This is not atomic so can miss counts. If you want absolute precision you should use a callback which can then ensure atomicity itself.

Finally when QEMU exits all the registered atexit callbacks are invoked.



We have to ensure we cannot deadlock, particularly under MTTCG. For this we acquire a lock when called from plugin code. We also keep the list of callbacks under RCU so that we do not have to hold the lock when calling the callbacks. This is also for performance, since some callbacks (e.g. memory access callbacks) might be called very frequently.

  • A consequence of this is that we keep our own list of CPUs, so that we do not have to worry about locking order wrt cpu_list_lock.
  • Use a recursive lock, since we can get registration calls from callbacks.

As a result registering/unregistering callbacks is “slow”, since it takes a lock. But this is very infrequent; we want performance when calling (or not calling) callbacks, not when registering them. Using RCU is great for this.

We support the uninstallation of a plugin at any time (e.g. from plugin callbacks). This allows plugins to remove themselves if they no longer want to instrument the code. This operation is asynchronous which means callbacks may still occur after the uninstall operation is requested. The plugin isn’t completely uninstalled until the safe work has executed while all vCPUs are quiescent.